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Chapter 2

Prisms, Lenses, and Imaging

Prisms

[Reading assignment: Hecht, 5.5. See also Smith Ch. 4]

Dispersing prism  

Notice that

 

but  , then

also , and .  Now, writing  in terms of :
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his formula shows that the deviation increases with increasing index . For most materials
increases with decreasing    This is the basis for the splitting of white light into colors by the prism.

Lateral displacement of a ray passing obliquely through a plane parallel glass plate:

for small incidence angle  

This can be used to laterally displace an image. One application of this very simple device is in a spe-
cialized high speed camera. The film has to move so fast that it is driven continuously (rather than
actually stopping briefly for each frame as in a conventional camera). A rotating plate is used to make
the image track the moving film during exposure of a given frame to prevent blur.

But the plate introduces aberrations.

– Chromatic effect: longitudinal and lateral displacements depend on  which is  dependent.

– For a plate used in convergant or divergent light, the amount of displacement is greater for larger
angles which gives spherical aberration. 
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Plane parallel plate placed in between a lens and its focus:

A simple calculation based on the paraxial approximation shows that the focus is displaced by amount

 . However, at steeper incidence angles, the focal shift becomes a function of the incidence

angle, which leads to spherical aberration.

Right Angle Prism

Porro prism

n

t

P P
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------------t

45

45

common building block in
non-dispersive prism devices

45

45

retro reflector (only folds
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Corner cube

Roof Prism

Erecting Prisms

Most telescopes produce an inverted image (both U-D, L-R) to the eye. Erecting prisms re-invert the
image to the proper orientation.

(beam reflects back on itself
regardless of incident direc-
tion)

right angle prism with a roof
on hypotenuse

provides an inversion of L-R
which right angle prism does not.

2 porro prisms used
together. 

Generally contacted
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Schmidt Prism Prism Beamsplitter

Polarizing Prisms

[Reading assignment: Hecht 8.4]
Birefringent crystals: given a propagation direction in the crystal - a set of orthogonal axes can be
determined. For the two polarization directions along these axes, the index is different.

The ordinary component has index  and the extraordinary component has index . As propagation

direction varies the ordinary component always has index  but  varies between  and .

Double Refraction
Light incident on a birefringent crystal

Birefringent plate

Common birefringent crystals-quartz (SiO2), calcite (CaCo3)

45

roof

ghost

coatingcoating

extraordinary

ordinary

no ne

no ne no ne0

no ne

e-ray

o-ray

o-ray pol and e-ray pol
are not necessarily same
as s and p pol.

o-ray

e-ray
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Not birefringent: Si, NaCl, GaAs, diamond

Nicol Prism

O-ray is internally reflected at the calcite-balsam interface . e-ray is transmitted (angle is cut

for Brewster)

Glan Air Prism

Optical Imaging Systems

[Reading assignment: Hecht 5.2]

Thin lens, focal length 

• Rays entering the lens parallel to the axis, pass through the back focus, 

• Rays passing through the front focus,  are “collimated” and emerge parallel to the axis.

• Rays passing through the center of the lens  are not bent. 

canada balsam cement, nB
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• For a “thin lens”, the rays are all bent at the lens plane, with no translation.

• Sign conventions: Heights above the axis are positive, below the axis are negative; left is negative,
right is positive. Focal length for converging lens is positive; diverging lens is negative.

 are positive 

 are negative

Triangles  and  are similar, so

Triangles  and  are similar, so

These two equations give us:  or           “Newtonian” form of lens law

Now use ,           (watch signs!)

cancel , divide by 

          “Gaussian” lens law

The lateral or transverse image magnification:

Use the lens law to get .

so we also find 

The longitudinal magnification is of interest.

For a given small shift of an object along the optic axis, how much does the image shift?
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We define the longitudinal magnification as:

The longitudinal magnification is positive and the square of the transverse magnification

Virtual Image

For an object to the left of the lens,  is negative. Since

Then if , then  is also negative.

The light emerging from the lens appears to be coming from the object with height  at distance 

behind the lens. 

For an optical system not immersed in air

The front and back focal lengths are not the same in this case

front focal length: 

d2
d2d1

d1

m
d1

d2 d1 f+ f d1f–

d1 f+ 2
----------------------------------= f

2

d1 f+ 2
---------------------= m

2
=

d1

1
d2
----- 1

f
--- 1

d1
-----+=

d1 f d2

d2

d1

h2

h

h1 d2

f2f1F1 F2

n2n1

f1



Chapter 2: PRISMS, LENSES, AND IMAGING

18 © Jeffrey Bokor, 2000, all rights reserved

back focal length: 

lens law becomes: 

 (show )

Refraction of light by a spherical surface (following Smith 2.4)

Sign Conventions
1. Radius is positive when center of curvature is to the right of the surface

2. Distance to the right of surface is positive; left negative.

3. For , counterclockwise from the surface normal is positive.

4. For , the angle is positive if the ray slope is positive.

5. Rays travel left to right

In the diagram above all the quantities are positive.

Consider triangle . By law of sines: 

(2.1)

Similarly for triangle :

(2.2)

Comparing triangles  and , we see they share a common angle. Therefore
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(2.3)

Finally, by Snell’s law

 (2.4)

We can arrive at the Gaussian lens law (for the single surface) from these equations.

Manipulate Eq. (2.1):

 

 

Now multiply by  to get

   (2.5)

Similarly, from Eq.(2.2),

(2.6)

Subtract Eq.(2.5) from Eq.(2.6)

Using Eq. (2.4),

(2.7)

This has the form of the lens law, except for the dependence on the sin of all the angles.

We shall see that Gaussian Optics applies to spherical surfaces only in the Paraxial Approximation.

Paraxial Approximation
The paraxial approximation refers to the case when all ray angles remain small. (Close to the optic
axis.) In this case, for all angles,  . By convention, the lower case letter is substituted
for the capital in this approximation, so
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. 

R is unaffected

Eqs. (2.1)-(2.4) become

 (2.8)

(2.9)

 (2.10)

 (2.11)

Then Eq. (2.7) becomes:

 (2.12)

This is the Gaussian lens law for a single surface.

Consider a ray incident from the left, parallel to the axis. Then , and we have 

Thus, the back focal length, , is . Similarly, for an image distance of , we must have 

and 

.

This means the front focal length  is 

(Watch minus sign!)

Recall the previous discussion for a lens not immersed in air:
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These relations clearly hold for the single spherical surface. 

Thin Lens Model
We now construct our model for the thin lens in air. Lens index is . We will find the imaging proper-

ties of the thin lens by using the previous results for a single spherical surface and applying them twice
- once for each of the two surfaces of the lens.

Use Eq. (2.12) for first surface:  , , 

     (2.13)

We get a virtual object of height  at 

Now consider the rays travelling inside the lens from the virtual object. Apply spherical surface law
now to the second surface. This time , , ,

        (2.14)

The thin lens approximation is that the lens thickness is negligible, so that . Using this in Eq

(2.13), then substituting in Eq. (2.14),

(2.15)

This is the Gaussian lens law, with the focal length identified as:

     (2.16)

This is called the lensmaker’s equation.
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We conclude that a lens with 2 spherical surfaces satisfies the Gaussian lens law, but only under 2
important approximations

• Paraxial approximation

• Thin-lens approximation

Thick lens or compound lens systems

[Reading assignment: Hecht 6.1]

Any symmetric optical system consisting of lenses and spaces can be generalized.

Light rays entering from the left, parallel to the optic axis, come to a focus, at the “second focal point”

Now, we take the rays entering the system and those emerging from the system and extend them. They
intersect on a plane called the “Second principal plane”. Similarly, the first focus and “first principal
plane” are defined for rays emerging from the system parallel to the axis, which all emanate from a
point.  

We define  as the distance from the second principal plane to the second focal point. Similarly we

define  as the distance from the first principal plane to the first focal point. For a system immersed in

air (same index on both sides), . 

second principal point

second principal plane

second focal point optic

axis

f2
optical system

bfl
“back focal length” or back working distance

first focal point

first principal plane

first principal point

f1

ffl

“front focal length” or working distance

f2

f1

f1 f2=
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With these definitions, the Gaussian lens law applies as follows:

With this geometry, all other relations now apply:

Wave optics of lenses

h

h P2

f
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At a given z-plane, the spherical wave has constant phase around circles. The form of the spherical

wave is  for a spherical wave converting to the point  on the axis. A lens modifies

the wave front, for example from planar to spherical.

How does this happen? 

Optical path length:
Optical waves travel more slowly in the glass since . In glass, the wave is delayed by an amount
as if it travelled a distance  in free space. If  [or ] then the delay varies with
(x,y) so the wavefront gets distorted.

We can analyze the lens in terms of its phase-delay. The light propagates in the glass as
 , where  is the phase delay.

In propagating from plane  to , the light travels a distance  in the glass and a distance

 in air, where  is the thickness at the thickest part of the lens. The phase delay depends on

:
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We can calculate , assuming spherical surfaces. Recall the sign convention for the surface radii: 

From this diagram, we can readily obtain

In the paraxial approximation , so

, thus

This gives a phase delay:

 Apart from the constant delay , the phase delay is:

A plane wave incident on the lens has a constant phase. After passing through the lens, the phase is
given above. This has the form of a spherical wave, converging to a point at a distance , where
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,

 is the focal length of the lens. This expression is identical to what we found from the ray optics anal-
ysis. 

Stop and Apertures

[Reading assignment: Hecht 5.3]

Aperture Stop
Every optical system has some component that limits the light cone that is accepted from an axial
object.

Simple case - single lens

• Entrance pupil:
Image of the aperture stop as seen from the object side. Defines the cone of light accepted by the optic.

The importance of the entrance pupil is that the brightness of the image depends on this cone angle.
The larger the acceptance angle, the more light that is collected from each object point, and hence the
brighter the image.

• Exit pupil:

f

AS

AS

could be a physical aperture placed
somewhere in the optical path.

could be the diameter “clear
aperture” of the lens.

entrance pupil
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Image of the aperture stop, as seen from the image side of the optic.

The exit pupil defines the cone angle of light converging to the image point. Later, we will see that this
is important in determining the image resolution that is set by diffraction.

Entrance and Exit Pupils are Images of each other
The entrance pupil is the image of the stop. The exit pupil is also an image of the stop. So the entrance
and exit pupils must also be images of each other. The pupils define the amount of light accepted by
and emitted from the optical system.

Chief Ray or Principle Ray
From a given object point, the ray that passess through the center of the pupils.

Marginal Ray
From a given object point, a ray that passes at the edge of the pupils.

Field Stop
Another stop in the system limits the extent of the object/image sizes. The chief ray from an object
point is blocked by the field stop. 

exit pupil

AS

entrance
pupil

chief ray

AS exit
pupil
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 Simple case: a mask at the object or image plane.

The field stop might also be set by a diaphragm somewhere in the optical path.

• Entrance window: Image of the field stop at the object plane.

• Exit window: Image of the field stop at the image plane.

Aberrations

[Reading assignment: Hecht 6.3]
As we have seen, spherical lenses only obey Gaussian lens law in the paraxial approximation. Devia-
tions from this ideal are called aberrations.

Rays toward the edge of the pupil (even parallel to the axis) violate the paraxial condition on the inci-
dence angle at the first surface. They focus closer (for biconvex lens) than . No truly sharp focus

occurs. The least blurred spot (smallest disc) is called circle of least confusion, or best focus. This
form of symmetric aberration is spherical aberration. 

There are many forms of aberration.

Coma: Variation of magnification with aperture.

    
AS

mask

film plane

F1

F1
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Rays passing through edge portions of the pupil are imaged at a different height than those passing
through the center.

A

D

B

C

E

F
G

H

C

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Map of Rays in Pupil Image Plane
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In astigmatism the tangential and sagittal images do not coincide. There are 2 line images with a circle
of least confusion in the middle.

Astigmatism

sagital rays

tangential image

sagital image

tangential rays

Field Curvature

Object plane    Lens

Image points lie on a curved
 surface, not a plane

Positive lenses give inward curvature 
negative lenses give backward curvature.
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Five Primary Aberrations 
Spherical, coma, astigmatism, field curvature, distortion

Wave Front Aberration
In a wave-optics picture, the thin lens is represented by phase delay.

Which gives Gaussian imaging. Aberrations modify . A spherical lens only gives this  in the parax-
ial approximation.

• For a complex optical system, we can collect the effects of all the lenses and represent them as a phase
delay in the exit pupil. Usually, we subtract the quadratic phase to find the aberration. The residual is
called the wave front error; or wfe

 usually depends on the field coordinate. In other words, the aberrations can vary depending on
where you are in the field of view.

Expressed in this way, the primary aberrations are written as:

Distortion: Field dependent magnification 

Barrel distortion Pincushion distortion
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Spherical aberration:  

Coma:  

Astigmatism:

Field Curvature: 

Distortion:  

Monochromatic Aberrations: All of the preceding discussion refers to aberrations that do not depend on
wavelength.

Chromatic Aberrations: Dependance of wavefront on wavelength.

Consider the simple thin lens equation:

The index  is generally  dependent, , so  is  dependent.

Change in image distance: longitudinal chromatic aberration 

Change in magnification: lateral color. Lateral color is usually more noticeable

Achromat: lens designed to cancel chromatic aberration.

Lens Design:

• The general problem of lens design involves cancelling aberrations

• Aberration depends on the lens index, as well as the surface radii.

• Complex lens systems can minimize aberrations

: is normalized radial coordinate in the pupil

: image height



h


Ad
2
h2

Ath
3 cos

n  n   f 

Violet
image

red
image
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Simple singlet case: For a given desired focal length, there is freedom to choose one of the radii for a sin-
glet The spherical aberration and coma depend on the particular choice, so these aberrations can be mini-
mized by the design form. This is illustrated in the following diagram:

Achromatic doublet. Two elements made from different glass materials

We generally choose design an achromat to minimize chromatic aberration across the visible part of the
spectrum.

R1 25–= R1 50–= R1 = R1 50= R1 25= R1 16.7=

Spherical
aberration coma

17


  field.design: 100mm focal length 

Optimum form (nearly plano-convex)

achromatic doublet

positive element:

negative element:
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Design of Cemented Doublet Achromat

The ‘D’ wavelength, near the center of visual brightness curve is chosen as the nominal wavelength
for specifying focal length. We then choose 2 indices on either side, for achromatization, for example,
‘C’, and ‘F’. 

For 2 thin lenses in contact

define lens power  with  in meters,

 units are diopters 

400 500 600 700
G


F D C

Violet Blue Green Yellow Red

1.57

1.56

1.55

1.54

1.53

1.52

1.51

Different glasses for use in
lenses. 

Fraunhofer designations.

C H 656.3 nm

D Na 589.2

F H 486.1

 H 434.0G'

 nm 

LF

TF

SPC2

LBC1

BSC

Sensitivity of eye

flint glass

crown glass

1
fD
----- 1

fD
------ 1

fD
--------+=

prime: crown glass

double prime: flint glass

f

P

nD 1–  1
r1
------ 1

r2
------– 

  nD 1–  1
r1
-------- 1

r2
--------– 

 +=
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Define  

Achromatic design means we make 

Simplifies to: 

For normal dispersion  has the opposite sign from . One lens must be positive one lens must be
negative.

For the center of the spectrum (D-line)

 

, so

Combining results, we find:

(2.17)

 is a property of a given glass called the “dispersion constant”

 is called the “dispersive power” or V-number. Glass manufacturers spec these numbers for use by
designers. Now, from Eq. (2.17), 

(2.18)

and

K 1
r1
------ 1

r2
------– 

 = K 1
r1
-------- 1

r2
--------– 

 =

PD nD 1– K= nD 1– K+

PF nF 1– K= nF 1– K+

PC nC 1– K= nC 1– K+

nF 1– K nF 1– K nC 1– K nC 1– K+=+

K K

PD nD 1– K=

PD nD 1– K=

K
K
--------

nD 1– PD

nD 1– PD
---------------------------------=

PD

PD
-----------

nD 1–  nF nC–  

nD 1–  nF nC– 
------------------------------------------------------- 


------––=

v
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                    (2.19)

Eqs. (2.18) and (2.19) are the design equations.

– Design starts with desired 

– Next choose your glass materials, i.e. 

– Find  from Eq. (2.19), then get 

– Choose radii (still some freedom left in choice of radii for minimization of monochromatic aberra-
tions). A common, simple choice is to make the crown lens biconvex, and to cement the two lenses
together, with no gap. This means:

 biconvex

 cemented

Then  is set by the constraint of Eq. (2.19).

For crown glass facing parallel light, this gives a good design to minimize spherical and coma. It can
be fine tuned by careful choice of 

Example: Design 10cm focal length cemented doublet using the crown and flint glasses.

 

 

note  (checks!)

Using biconvex for positive element 

with  , 

nC nD nF nG’

crown 1.50868 1.511 1.51673 1.52121
flint 1.61611 1.6210 1.63327 1.64369

PD PD


 –
-----------------= PD P– D


 –
-----------------=

fD PD

 

PD PD K K

r2

 

PD 10D=

 63.4783=  36.1888=

PD 23.2611= D PD 13.2611D–=

r1 r2–=

K 2
r1
------

PD

nD 1–
----------------- 45.5207= = =

r1 0.043961m= 4.3961cm=

r1 r1–= K 1
r1
--------– 1

r2
--------–

PD

nD 1–
------------------- 21.3544–= = =
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So, .    This completes the design.

Now check how well it works:

Resolution limit of an optical system

[Reading assignment: Hecht 10.2.6]

Due to diffraction at the aperture stop, the image of a point is slightly blurred. Diffraction theory tells
us that the image depends on the shape of the aperture. For a circular aperture:

J1(x) is a special function called the “Bessel Function of the First Kind”.

PC nC 1– K= nC 1– K+ 0.50868 45.5207 0.6161  21.3544– + 10.0012D= =

PF 9.9988D=

1
2

21

D

Ii 2  Io

2J1 D

---- 2sin 

 

D


------- 2sin
-------------------------------------

2

=
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The first zero in the pattern occurs at .

If 2 points lie close together in the object plane, the Airy patterns will overlap. The criterion for
whether the 2 points can be resolved depends on the type of imaging application and it is somewhat
arbitrary. A very common criterion is Rayleigh’s criterion.

According to Rayleigh’s criterion, 2 spots are resolved if the maximum of the pattern from one point
falls on the first minimum of the other.

We say that the angular resolution in the image plane is 

with  the distance to the exit pupil (radius of exit sphere), we have 

“Airy Pattern”

Airy 
Disk

2

Ii 2 

2 1.22
 
D
-----=

1.22 D

2
l
2

h2
D

exit pupil

l
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for small , 

so 

where .

The “Numerical Aperture” or NA is a very important property of an imaging system. It is simply the
sine of the half angle subtended by the pupil. Here, NA2 is the numerical aperture of the exit pupil.

Somewhat more generally, consider a complete imaging system. The entrance pupil subtends an angle
with an object of height , 

A general property of imaging systems holds that:

.

The numerical aperture is generalized if the object and image spaces are immersed in different index
of refraction.

. 

Here NA1 is the “entrance” numerical aperture and NA2 is the “exit numerical aperture.

Once again we have:  

For large  , so the resolution ~ wavelength of light.

Also notice that:

which says that the entrance and exit numerical apertures have a ratio equal to the transverse magnifi-
cation.

l D–
2 2sin
-----------------=

2 (small h2  h2 l2

NA2 2sin

1 h1

2
l
2

h21 1
h1

entrance
pupil

exit
pupil

imaging
system

index n1 index n2

object
image

h1n1 1sin h2n2 2sin=

n 1sin NA1 n2 2sin NA2

NA 0.6     h2 =

h2

h1
----- m

NA1

NA2
----------= =


