
Lecture 12

Lecture 12 OPTICAL DETECTORS

(Reference: Optical Electronics in Modern Communications, A. Yariv, Oxford, 1977, Ch. 11.)

Photomultiplier Tube (PMT)

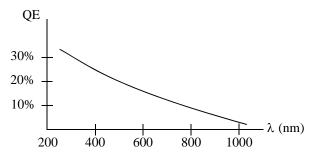
- Highly sensitive detector for light from near infrared \rightarrow ultraviolet
- Can detect as little as 10^{-19} Watt!

Voltage divider chain to bias dynodes

R chosen to have ~100V drop per dynode Photocathode C:- absorbs photon \rightarrow ejects electron

– work function ϕ is the minimum energy needed to eject an electron

- the photon energy must exceed the work function $hv > \phi$ to get photoelectrons


Dynodes D1-D8:Secondary electron emission. Electron from cathode accelerated by ~100 eV. Impact into dynode surface causes ejection of multiple electrons, $\delta \cong 5$.

For *N* dynodes, the total gain is then δ^N .

Photocathode quantum efficiency: QE = probability a photon will eject one electron

$$0 \leq QE \leq 1$$

Typical photocathode response

Sensitivity:

For 10 dynodes, $\delta = 5$, $G = 5^{10} \approx 10^7$.

Take 2eV photons (620 nm), 1 picoW = 10^{-12} W = 10^{-12} J/s

 $1 \text{ eV} = 1.6 \times 10^{-19} \text{J}$, so, $10^{-12} \text{W} = 3 \times 10^{6} \text{ photons/s}$

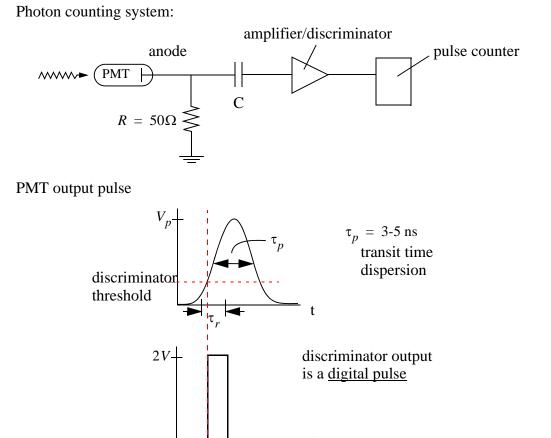
With QE = 30%, Anode current is

 $(3 \times 10^6)(0.3)10^7 = 10^{13}$ electrons/s = 1.6×10^{-6} A

Phototube dark current:1) random thermal excitation of electrons from photocathode

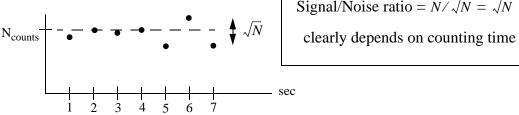
2) cosmic rays, ambient radioactivity

- Thermal excitation rate is proportional to $e^{-\Phi/kT}$, where Φ represents the cathode work function


so lower work function \rightarrow IR sensitivity, **but** larger dark current

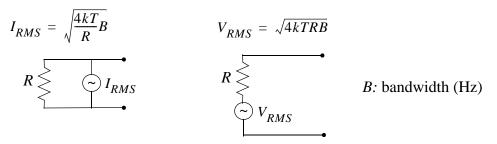
- For room temperature, typical cathode dark current, I_{cd} , is $\approx 10^4$ electrons/sec. Anode dark current is then $I_{ad} = I_{cd} \cdot G$
- Dark current sets a lower limit to phototube sensitivity to low light levels. To distinguish a light signal above the background dark current, the photoelectric cathode current must exceed the dark current. If I_{cd} is $\approx 10^4$ e/sec, then the sensitivity to light can be $\sim 3 \times 10^4$ photons/sec (assuming QE = 30%). 3×10^4 red photons/s $\approx 10^{-14}$ W!
- Dark current can be reduced by *cooling*. Using thermoelectric cooling $T \equiv -40$ C is easily obtained. Assume a work function of $\Phi = 1.5$ eV

$$\frac{I_{cd}(260K)}{I_{cd}(300K)} = \frac{e^{-1.5/0.0225}}{e^{-1.5/0.026}} = e^{-1.5(44.4 - 38.5)} = e^{-8.8} \cong 1.4 \times 10^{-4}$$


Dark current is reduced by this amount! \rightarrow down to ~1 e/sec. Minimum detectable power become $< 10^{-18}$ W!

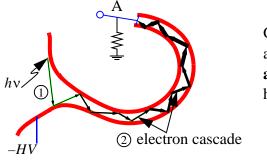
Photon counting: PMT is so sensitive, we are really counting photons. Often, PMT circuits are specifically optimized to do this.

- How big is the PMT output pulse from one photon? For $G \sim 10^7$, we get 10^7 electrons $\approx 10^{-12}$ C. For $\tau_p = 10^{-8}$ sec, $I_{apk} \sim 10^{-4}$ A. For $R = 50\Omega$, $V_p \sim 5$ mV.
- Discriminator eliminates electrical noise in < 1mV range. V_p has a variation due to statistical nature of gain process. Discriminator also eliminates this.


Shot noise: Photon arrival is always statistical. Generally it follows Poisson statistics. Then if the photon arrival rate is N ph/sec, and we count for 1 sec, we get N on average. The standard deviation will be found to be \sqrt{N} . This means we have noise.

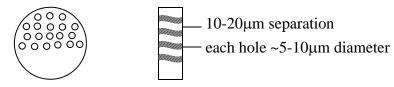
Signal/Noise ratio = $N / \sqrt{N} = \sqrt{N}$

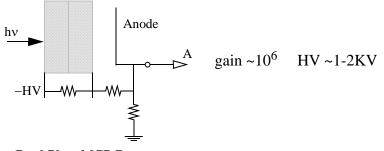
Shot noise is <u>universal</u> for light detection. Even if photons are not explicitly counted, the shot noise is a fundamental limit. It is most significant at low light levels, though, due to \sqrt{N} dependence.


Johnson noise: Random thermal noise in any resistor, R

Equivalent model of noise as either current or voltage source.

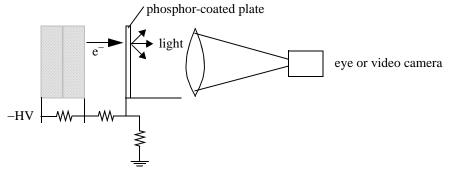
Channel Electron Multiplier (Channeltron)


Single monolithic device functions as a PMT:


Glass tube bent around curve. One end open as a funnel shape. Coating acts as photocathode **and** secondary electron emitter. Also, coating has high, but not infinite electrical resistance.

- 1. Photon hits funnel portion
- 2. Electrons are accelerated into the bent tube by bias field
- 3. Secondary electron emission gives gain at each electron collision with wall
- 4. Must be operated in vacuum
- **5.** Typical gain $\sim 10^4$
- 6. More compact and rugged than PMT

Microchannel plate MCP – array of *channeltrons*



- each channel is a miniature channeltron
- gain $\sim 10^3$

Dual Plate MCP Detector

MCP Image Intensifier

Single or Dual Plate MCP

- Electrons accelerated out of back of MCP into phosphor
- Phosphor QE ~50% photons/electrons

Image intensification $QE_{MCP} \cdot G_{MCP} \cdot QE_{phosphor} \approx 10^5$

 \rightarrow Night vision goggles