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Lecture 7

Wave Front Aberration
In a wave-optics picture, the thin lens is represented by phase delay.

Which gives Gaussian imaging. Aberrations modify . A spherical lens only gives this  in the parax-
ial approximation.

• For a complex optical system, we can collect the effects of all the lenses and represent them as a phase
delay in the exit pupil. Usually, we subtract the quadratic phase to find the aberration. The residual is
called the wave front error; or wfe

 usually depends on the field coordinate. In other words, the aberrations can vary depending on
where you are in the field of view.

Expressed in this way, the primary aberrations are written as:

Spherical aberration:  

Coma:  

Astigmatism:

Field Curvature: 

Distortion:  
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Monochromatic Aberrations: All of the preceding discussion refers to aberrations that do not depend on
wavelength.

Chromatic Aberrations: Dependance of wavefront on wavelength.

Consider the simple thin lens equation:

The index  is generally  dependent, , so  is  dependent.

Change in image distance: longitudinal chromatic aberration 

Change in magnification: lateral color. Lateral color is usually more noticeable

Achromat: lens designed to cancel chromatic aberration.

Lens Design:

• The general problem of lens design involves cancelling aberrations

• Aberration depends on the lens index, as well as the surface radii.

• Complex lens systems can minimize aberrations

Simple singlet case: For a given desired focal length, there is freedom to choose one of the radii for a sin-
glet The spherical aberration and coma depend on the particular choice, so these aberrations can be mini-
mized by the design form. This is illustrated in the following diagram:
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Achromatic doublet. Two elements made from different glass materials

We generally choose design an achromat to minimize chromatic aberration across the visible part of the
spectrum.
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Design of Cemented Doublet Achromat

The ‘D’ wavelength, near the center of visual brightness curve is chosen as the nominal wavelength
for specifying focal length. We then choose 2 indices on either side, for achromatization, for example,
‘C’, and ‘F’. 

For 2 thin lenses in contact

define lens power  with  in meters,

 units are diopters 

Define  

Achromatic design means we make 

Simplifies to: 

For normal dispersion  has the opposite sign from . One lens must be positive one lens must be
negative.

For the center of the spectrum (D-line)
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, so

Combining results, we find:

(1.1)

 is a property of a given glass called the “dispersion constant”

 is called the “dispersive power” or V-number. Glass manufacturers spec these numbers for use by
designers. Now, from Eq. (1.1), 

(1.2)

and

                    (1.3)

Eqs. (1.2) and (1.3) are the design equations.

PD nD 1– K=

K
K
--------

nD 1– PD

nD 1– PD
---------------------------------=

PD

PD
-----------

nD 1–  nF nC–  

nD 1–  nF nC– 
------------------------------------------------------- 


------––=


nD 1–

nF nC–
------------------

v

PD


-----------

PD


---------+ 0=

PD PD


 –
-----------------= PD P– D


 –
-----------------=


