Course Organization and Syllabus (Revised on September 3)

Instructor: Professor Joseph M. Kahn, 514 Cory, 3-8848, jmk@eecs, http://www.eecs.berkeley.edu/~jmk. OH: M 4-5, W 11-12. Assistant: Rosita Alvarez-Croft, 558 Cory, 3-6683, rosita@eecs.

Teaching Assistants:
Lenny Grokop, lgrokop@eecs, OH: M 1-2, Tu 1-2, 297 Cory.
Ryan White, ryanw@eecs, OH: Tu 11-12, W 10-11, 297 Cory.

Class Meetings: M W 2-4 pm, 277 Cory Hall.

Section Meetings:
101: Tu 10-11, 293 Cory (White)
102: Tu 2-3, 534 Davis (Grokop)
103: W 9-10, 293 Cory (White)
104: F 10-11, 293 Cory (Grokop).
Regardless of which section you are officially enrolled in, feel free to attend any section(s) you wish to.

WWW Site: announcements, handouts, and homework assignments (but not solutions) will be posted at http://www-inst.eecs.berkeley.edu/~ee120. As of Monday, August 26, the class home page could be accessed using Microsoft Internet Explorer, but not with Netscape Navigator. This problem should be corrected soon.

News Group: the class news group is ucb.class.ee120.

Official Prerequisites: Math 53 and 54 and EECS 20. The relevant concepts from EECS 20 are given a reasonably self-contained introduction in EECS 120. Hence, if you are not an EECS undergraduate and are not required to take EECS 20, you may consider skipping the EECS 20 prerequisite.

Grading: Homework (25%), First Midterm (15%), Second Midterm (15%), Final (45%).

Examinations: Exam dates given are tentative. All exams will be open-book and open-note, but no calculators, computing or communication devices will be permitted. As the exams will provide space in which to
work the problems and write the answers, no blue books will be required. A lecture will be given after the first midterm, but probably not after the second.

Homework: There will be about twelve homework assignments during the semester. In most cases, assignments will be handed out on Mondays, and will be due at the *beginning* of class on the Wednesday nine days later. No homework will be due during midterm weeks. *Late HW will not be accepted.* A group of up to three students may work together and turn in a single homework assignment bearing all their names, for which they will earn a common grade.

MATLAB Assignments: About 25% of the homework will involve numerical exercises using MATLAB. Please turn in any graphs you are asked to plot, along with listings of your MATLAB scripts. It is strongly recommended that you not do the MATLAB exercises at the last minute, so that you will not be at the mercy of circumstances beyond your control (e.g., a printer breakdown).

The optional supplementary text *Mastering Matlab 6* is a good general tutorial and reference on MATLAB, and you will find it especially useful if you have never used MATLAB before. If you have used MATLAB previously, you probably do not need to buy this book. This book does not discuss in detail a few of the specialized MATLAB functions used in class, but you can find out all you need to know about these by using MATLAB’s built in `help` function.

The assigned exercises can be done on any computer running MATLAB 6 with the Control and Signal Processing Toolboxes. No multimedia capability is required. Three options are available for running MATLAB.

1. Run MATLAB on the EECS instructional Unix systems. You can log in to the Unix systems using the terminals in 199 Cory. Alternatively, you can access these Unix systems from any computer at home or on Campus using `ssh` over the Internet. About two thirds of the students in the class already have Unix accounts. Students who do not have Unix accounts can request them by logging in as `newacct` (password `newacct`) in 199 Cory or via `ssh` to `cory.eecs.berkeley.edu`. Your Unix account will not expire at the end of the semester. For information, refer to: http://inst.eecs.berkeley.edu/connecting.html.

2. Run MATLAB on the EECS instructional Windows 2000 systems. By the end of the first week of classes, the EECS Instructional and Electronics Support Group will set up Windows 2000 accounts for all students in the class (including those on the waiting list). A list of user names will be posted at the class news group, `ucb.class.ee120`. The initial password will be your student identification number. Your Windows account will expire at the end of the semester. You can use any of the Windows 2000 systems listed at: http://inst.eecs.berkeley.edu/~iesg/iesglabs.html.

3. Buy the Student Version of MATLAB 6, along with the Control and Signal Processing Toolboxes.

Syllabus: This is a tentative weekly schedule of material to be covered. You are responsible for reading the required text. It is important that you don't fall behind the class. The pace of the course is rapid, and the material is cumulative.

Weeks 1-2 (8/26, 8/28, 9/4): Introduction to Signals and Systems
Continuous-time and discrete-time (CT and DT) signals and systems. Classification of signals. Energy and power signals. Operating on signals to produce new signals. Sinusoids, complex exponentials, step and
Course Organization and Syllabus (Revised on September 3)

Convolution. Impulse response and superposition integral or sum for linear, time-invariant (LTI) systems. Frequency response of LTI systems. LTI systems characterized by differential or difference equations. LTI systems characterized by block diagrams.
Reading: HV Sect. 2.1-2.5 (skip Sect. 2.6 on state variables).

Weeks 5-7 (9/23, 9/25, 9/30, 10/2, 10/7, 10/9): Fourier Representations of CT and DT Signals
Reading: HV Sect. 3.1-3.6.

Midterm 1: tentatively Wednesday, 10/9, in class, 60 minutes. The material covered by the midterm will be announced in class. A lecture will probably be given after the exam.

Weeks 8-9 (10/14, 10/16, 10/21, 10/23): Applications of Fourier Representations
Reading: HV Sect. 4.1, 4.2 (skip state variable sect.), 4.3-4.5, 4.6 (skip subsampling sect.), 4.7, 4.9, 8.2, 8.3. You may wish to read Sect. 4.8, 4.10, 4.11.

Reading: HV Sect. 5.1-5.10.

Weeks 11-13 (11/4, 11/6, 11/18, 11/20): Laplace Transforms for CT Signals and Systems
Reading: HV Sect. 6.1-6.6, 6.7 (skip state variable sect.), 8.5 (read sect. on Butterworth filters only), 9.1-9.2, B.1.

Midterm 2: tentatively Wednesday, 11/13, in class, 60 minutes. The material covered by the midterm will be announced in class. A lecture will probably not be given after the exam.

Reading: HV Sect. 7.1-7.8, B.2.

Final Exam: Group 20, Wednesday, December 18, 5-8 p.m., room to be announced.