Lecture 6 notes

Square matrices

A square $d \times d$ matrix (real or complex) maps \mathbb{C}^d to \mathbb{C}^d.

$$
\begin{bmatrix}
 a_{11} & a_{12} & \ldots & a_{1d} \\
 a_{21} & a_{22} & \ldots & a_{2d} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{d1} & a_{d2} & \ldots & a_{dd}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_d
\end{bmatrix}
=
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_d
\end{bmatrix}
$$

where

$$
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_d
\end{bmatrix}
=
\begin{bmatrix}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1d}x_d \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2d}x_d \\
 \vdots \\
 a_{d1}x_1 + a_{d2}x_2 + \ldots + a_{dd}x_d
\end{bmatrix}
$$

The matrix A is linear, i.e

$$
Ax_{(1)} = y_{(1)} \text{ and } Ax_{(2)} = y_{(2)} \implies A(ax_{(1)} + bx_{(2)}) = ay_{(1)} + by_{(2)}
$$

for all $a, b \in \mathbb{C}$.

Scalars (1×1 square matrices) commute

$d \times d$ matrices in general do not commute.

$$
\begin{bmatrix}
 2 & 1 \\
 0 & 2
\end{bmatrix}
\begin{bmatrix}
 2 & 0 \\
 1 & 2
\end{bmatrix}
=
\begin{bmatrix}
 5 & 2 \\
 2 & 4
\end{bmatrix}
$$

while

$$
\begin{bmatrix}
 2 & 0 \\
 1 & 2
\end{bmatrix}
\begin{bmatrix}
 2 & 1 \\
 0 & 2
\end{bmatrix}
=
\begin{bmatrix}
 4 & 2 \\
 2 & 5
\end{bmatrix}
$$

Eigenvalues and Eigenvectors

Let A be a $d \times d$ matrix (real or complex).

$det(sI - A)$ is called the characteristic polynomial of A.

Any root of the characteristic polynomial is called an eigenvalue of A.

Every square matrix has at least one eigenvalue, possibly complex (from the fundamental theorem of algebra).

Let λ be an eigenvalue of A.

Then $\lambda I - A$ is singular, so there is at least one nonzero vector $v \in \mathbb{C}^d$ with $$ (\lambda I - A)v = 0 $$

Such a vector is called an eigenvector of A corresponding to the eigenvalue λ.

Note that $$ Av = \lambda v $$

A basis of vectors
A set of vectors $v_1, \ldots, v_k \in \mathbb{C}^d$ is called linearly independent if
$$ a_1 v_1 + \ldots + a_k v_k = 0 \implies a_1 = \ldots = a_k = 0 $$

If a set of vectors $v_1, \ldots, v_k \in \mathbb{C}^d$ is linearly independent then $k \leq d$.

A set of vectors $v_1, \ldots, v_k \in \mathbb{C}^d$ is said to span \mathbb{C}^d if every vector $v \in \mathbb{C}^d$ can be written as
$$ v = a_1 v_1 + \ldots + a_k v_k $$

for some coefficients $a_1, \ldots, a_k \in \mathbb{C}$.

If a set of vectors $v_1, \ldots, v_k \in \mathbb{C}^d$ spans \mathbb{C}^d then $k \geq d$.

A basis for \mathbb{C}^d is a set of vectors v_1, \ldots, v_d that is both linearly independent and spans \mathbb{C}^d.

A point to remember
Let A and B be square $d \times d$ matrices.

Suppose there is a basis v_1, \ldots, v_d for \mathbb{C}^d comprised of eigenvectors of A, with respective eigenvalues $\lambda_1, \ldots, \lambda_d$.
Suppose the same \(v_1, \ldots, v_d \) for \(\mathbb{C}^d \) are also eigenvectors of \(B \) with respective eigenvalues \(\mu_1, \ldots, \mu_d \).

Then \(A \) and \(B \) commute.

Given \(v \in \mathbb{C}^d \) write \(v = a_1 v_1 + \ldots + a_k v_k \) for some coefficients \(a_1, \ldots, a_k \in \mathbb{C} \).

\[
ABv = AB \left(\sum_{i=1}^{k} a_i v_i \right) = A \left(\sum_{i=1}^{k} a_i \mu_i v_i \right) = \sum_{i=1}^{k} a_i \mu_i \lambda_i v_i
\]

\[
BAv = BA \left(\sum_{i=1}^{k} a_i v_i \right) = B \left(\sum_{i=1}^{k} a_i \lambda_i v_i \right) = \sum_{i=1}^{k} a_i \mu_i \lambda_i v_i
\]

Orthonormal basis

- Let \(v_1, \ldots, v_d \) be a basis for \(\mathbb{C}^d \).
- The basis is called orthonormal if:

\[
\sum_{i=1}^{d} v_{li} v_{mi}^* = \begin{cases} 1 & \text{if } l = m \\ 0 & \text{if } l \neq m \end{cases}
\]

where \(1 \leq l, m \leq d \).

We sometimes write this as

\[
<v_l, v_m> = \delta_{lm}
\]

for all \(1 \leq l, m \leq d \).
Let \(v_1, \ldots, v_d \) be an orthonormal basis for \(\mathbb{C}^d \) and let \(v \) be an arbitrary vector in \(\mathbb{C}^d \).

We can write
\[
v = \sum_{i=1}^{d} a_i v_i
\]
where
\[
a_i = \langle v, v_i \rangle
\]
because, for any \(1 \leq j \leq d \), we have:
\[
\langle v, v_j \rangle = \sum_{i=1}^{d} a_i \langle v_i, v_j \rangle = \sum_{i=1}^{d} a_i \delta_{ij} = a_j
\]

Eigenfunctions of a discrete time LTI system

\[
y[n] = \sum_{k=-\infty}^{\infty} h[k] x[n-k]
\]

Consider the complex exponential input
\[
x[n] = A z^n
\]
The associated output:
\[
y[n] = \sum_{k=-\infty}^{\infty} h[k] A z^{n-k} = A z^n \sum_{k=-\infty}^{\infty} h[k] z^{-k} = H(z) A z^n
\]
is a fixed constant multiple of the input.
The signal Az^n is an eigenfunction of the system corresponding to the eigenvalue $H(z)$.

$H(z) = \sum_{k=-\infty}^{\infty} h[k] z^{-k}$ is called the transfer function of the LTI system.

Consider the input

$$x[n] = \sum_r A_r z^n$$

The corresponding output is

$$y[n] = \sum_r A_r H(z_r) z^n$$

If we could express an arbitrary input as a linear combination of complex exponentials, we would be able to figure out the corresponding output from knowledge of the transfer function $H(z)$.

Eigenfunctions of a continuous time LTI system

$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$

Consider the complex exponential input

$$x(t) = Ae^{st}$$

The associated output:

$$y(t) = \int_{-\infty}^{\infty} h(\tau) Ae^{s(t-\tau)} d\tau$$

$$= Ae^{st} \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau$$

$$= H(s) Ae^{st}$$

is a fixed constant multiple of the input.

The signal Ae^{st} is an eigenfunction of the system corresponding to the eigenvalue $H(s)$.

$H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau$ is called the transfer function of the LTI system.

Consider the input

$$x(t) = \sum_r A_r e^{s_r t}$$

The corresponding output is

$$y(t) = \sum_r A_r H(s_r) e^{s_r t}$$
If we could express an arbitrary input as a linear combination of complex exponentials, we would be able to figure out the corresponding output from knowledge of the transfer function $H(s)$.

Fourier series expansion for a continuous time periodic signal

Fix $T > 0$. Let ω_0 denote $\frac{2\pi}{T}$.

The complex exponentials that are periodic with period T are the signals $e^{j k \omega_0 t}$ for $k \in \mathbb{Z}$.

Given a periodic signal $x(t)$ with period T we might hope to be able to write

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j k \omega_0 t}$$

where

$$a_k = \frac{1}{T} \int_0^T x(t) e^{-j k \omega_0 t} dt$$

If a periodic signal $x(t)$ with period T satisfies

$$\int_0^T |x(t)|^2 dt < \infty$$

and we define its *Fourier series coefficients*

$$a_k = \frac{1}{T} \int_0^T x(t) e^{-j k \omega_0 t} dt$$

then we have

$$\lim_{K \to \infty} \int_0^T |x(t) - \sum_{k=-K}^{K} a_k e^{j k \omega_0 t}|^2 dt = 0.$$

Fourier Series examples

- $x(t) = \sin(\omega_0 t)$, where $\omega_0 = \frac{2\pi}{T}$.
 has
 $a_{-1} = a_1 = \frac{1}{T}$ and $a_k = 0$ for $k \neq \pm 1$.
- $x(t)$ periodic with period T and
 $$x(t) = \begin{cases} 1 & \text{if } |t| < T_1 \\ 0 & \text{if } T_1 < |t| < \frac{T}{2} \end{cases}$$
 has
\[a_0 = \frac{2T_1}{T} \quad \text{and} \quad a_k = \frac{\sin(k\omega_0 T_1)}{k\pi} \quad \text{for} \quad k \neq 0 \]

The special case of the above when \(T_1 = \frac{T}{4} \) has

\[a_0 = \frac{1}{2} \quad \text{and} \quad a_k = 0 \quad \text{for} \quad k \text{ even} \quad \text{and} \quad a_k = \frac{1}{|k|\pi} \quad \text{for} \quad k \text{ odd}. \]