Problem 1 (Wireless Downlink.)

A base station transmits simultaneously to three mobiles. It needs to send a signal \(s_1(t) \) to Mobile 1, a signal \(s_2(t) \) to Mobile 2, and a signal \(s_3(t) \) to Mobile 3. Since \(s_1(t), s_2(t) \) and \(s_3(t) \) are speech signals, they are real-valued and band-limited:

\[
S_i(j\omega) = 0, \quad \text{for } |\omega| > W, \quad (1)
\]

for \(i = 1, 2, 3 \). The base station needs to produce a real-valued output signal \(y(t) \) to be transmitted out of the antenna. The FCC allows you to use the frequency band \(\omega_0 \leq |\omega| \leq \omega_0 + 3W \).

- Draw the block diagram of the base station, with inputs \(s_1(t), s_2(t) \) and \(s_3(t) \) and output \(y(t) \), where \(y(t) \) must comply with FCC regulations and permit perfect recovery of \(s_1(t), s_2(t) \) and \(s_3(t) \). Hint: There are multiple solutions; only one is required.

- Draw the block diagram of the demodulation system at Mobile 1, with input \(y(t) \) and output \(s_1(t) \).

You may use arbitrary components, but carefully specify all involved parameters, such as cut-off frequencies of filters.

Problem 2 (Amplitude modulation.)

(a) For the discrete-time signal \(x[n] \) it is known that \(X(e^{j\omega}) = 0, \) for \(|\omega| > \pi/4 \). Determine the range of \(\omega \) for which the DTFT of \(y[n] = \cos(\frac{5\pi}{4}n)x[n] \) must be zero. Hint: Select an example spectrum \(X(e^{j\omega}) \) and sketch the resulting DTFT of \(y[n] \).

(b) The real-valued data signal \(x(t) \) is known to be band-limited, i.e., \(X(j\omega) = 0, \) for \(|\omega| > W \). Consider the block diagram of Figure 1, where

\[
H_1(j\omega) = \begin{cases} 1, & \text{for } |\omega| \leq \omega_c, \\ 0, & \text{otherwise}, \end{cases} \quad \text{and} \quad H_2(j\omega) = \begin{cases} 1, & \text{for } |\omega| \geq 2\omega_c, \\ 0, & \text{otherwise}. \end{cases} \quad (2)
\]

- Pick an arbitrary (bandlimited) example spectrum for \(x(t) \), and sketch the corresponding spectrum of the signal \(y(t) \).

- For what values of the parameters \(W \) and \(\omega_c \) is it possible to recover \(x(t) \) from \(y(t) \)?

- Provide the block diagram of a system that recovers \(x(t) \), given \(y(t) \), carefully specifying all involved parameters.

(c) The real-valued data signal \(x(t) \) is known to be band-limited, i.e., \(X(j\omega) = 0, \) for \(|\omega| > W \). The goal is to perform standard (i.e., double-sideband) AM with carrier frequency \(\omega_c > 5W \). Unfortunately, the only type of modulator available is multiplication by \(\cos(\frac{5\pi}{4}t) \). Otherwise, addition, scalar multiplication, and filters can be used. Draw the block diagram of the system that achieves our goal, and if your system uses a filter, specify the desired frequency response. Hint: Pick an example spectrum for \(x(t) \) and sketch the spectra of intermediate signals to maximize your chances for partial credit.
The real-valued data signal \(x(t) \) is known to be band-limited, i.e., \(X(j\omega) = 0 \), for \(|\omega| > W \). The goal is to perform single-sideband AM with only the lower sideband, with carrier frequency \(\omega_c > 5W \). Again, you can use addition, scalar multiplication, and multiplication by \(\cos(\omega_m t) \), for arbitrary \(\omega_m \). However, this time, you only have fixed ideal low-pass filters with the following frequency response:

\[
H(j\omega) = \begin{cases}
1, & \text{for } |\omega| \leq \omega_c/2 \\
0, & \text{otherwise}.
\end{cases}
\]

(3)

Draw the block diagram of a system that achieves the goal, clearly specifying all involved parameters, such as the frequencies of the modulators, etc. Hint: Pick an example spectrum for \(x(t) \) and sketch the spectra of intermediate signals to maximize your chances for partial credit.

Problem 3 \((PAM.)\)

Two pulses are suggested for a PAM system:

\[
p_1(t) = ae^{-t}u(t), \quad \text{and} \quad p_2(t) = be^{-10t}u(t),
\]

(4)

where \(a \) and \(b \) are positive real numbers that will be selected appropriately, leading to

\[
y_i(t) = \sum_{k=-\infty}^{\infty} x[k]p_i(t - kT), \text{ for } i = 1, 2,
\]

(5)

where we choose \(T = 1 \). We suppose that the data signal is bounded to \(|x[n]| \leq 1 \). In this problem, we want to compare the two pulses \(p_1(t) \) and \(p_2(t) \).

(a) Select \(a = 2 \) and \(b = 2\sqrt{10} \). For this choice, it can be shown that the pulse energy is the same for \(p_1(t) \) and for \(p_2(t) \). (You don’t have to show this!) Now consider the transmission of \(p_1(t) \) and \(p_2(t) \), respectively, across a communication channel with impulse response \(h(t) \) and corresponding frequency response

\[
H(j\omega) = \frac{1}{6 + j\omega}.
\]

(6)

This yields an output signal \(z_i(t) = (p_i * h)(t) \), for \(i = 1, 2 \).

- Evaluate the energy of the received signals, \(z_1(t) \) and \(z_2(t) \), respectively.
- Which received signal has the larger energy?
- How is it possible that even though the two pulses have the same transmitted energy, their received energies differ?
(b) (Hard problem) To have a fair comparison, we have to make sure that the powers of the transmitted signals \(y_1(t) \) and \(y_2(t) \), respectively, are equal. To adjust the power, assume that \(x[n] = 1 \) for all \(n \), i.e., for \(-\infty < n < \infty\). Determine the relationship between \(a \) and \(b \) such that for this particular \(x[n] \), the signals \(y_1(t) \) and \(y_2(t) \) have the same power. (As seen in class, this provides a worst case analysis.)

Hint: By contrast to Part (a), this question studies the power of the entire signal, rather than the energy of a single pulse.

Problem 4 (Discrete-time Differentiator.)

We would like to construct a system \(D \) that implements a derivative, that is, for an input \(x(t) \), the system should give an output \(y(t) \) given by

\[
y(t) = D\{x(t)\} = \frac{dx(t)}{dt}.
\]

It is suggested to use the following system:

\[
\begin{array}{cccccc}
 & x(t) & \rightarrow & H(j\omega) & \rightarrow & z(t) \\
 & & & \text{Sampling at} & \text{intervals} & T \\
 & & & z[n] & \rightarrow & G(e^{j\Omega}) & y_1[n] \\
 & & & & \rightarrow & \text{Ideal} & \text{Reconstruction} \\
 & & & & & \rightarrow & \tilde{y}(t)
\end{array}
\]

where

\[
G(e^{j\Omega}) = \frac{\Omega}{T}, \text{ for } |\Omega| \leq \pi.
\]

This system does not exactly implement the desired system \(D \). Instead, it produces an output \(\tilde{y}(t) \) which is, in general, not equal to the desired output \(y(t) \).

(a) Suppose that

\[
H(j\omega) = \begin{cases}
1, & \text{for } |\omega| \leq \pi/T \\
0, & \text{otherwise}
\end{cases}
\]

• Determine and sketch the overall frequency response (magnitude and phase) of the system with input \(x(t) \) and output \(\tilde{y}(t) \).

• For the test signal \(x(t) \) with Fourier transform \(X(j\omega) = e^{-|\omega|} \), determine the error between the desired signal, \(y(t) \), and the actual system output, \(\tilde{y}(t) \), given by

\[
E = \int_{-\infty}^{\infty} |y(t) - \tilde{y}(t)|^2 dt,
\]

as a function of the sampling interval \(T \). What happens as we increase the sampling frequency?

(b) Unfortunately, it is quite difficult to exactly implement ideal frequency filters like \(H(j\omega) \) in Part (a). As a simple model of this imperfection, suppose now that

\[
H(j\omega) = \begin{cases}
1, & \text{for } |\omega| \leq \pi/T \\
\epsilon, & \text{otherwise}
\end{cases}
\]

For the same test signal as in Part (a), that is, \(X(j\omega) = e^{-|\omega|} \), determine the spectrum \(Z_\delta(j\omega) \) of the sampled signal,

\[
z_\delta(t) = z(t) \sum_{k=-\infty}^{\infty} \delta(t - kT).
\]
• Start with a sketch of $Z_\delta(j\omega)$, carefully labeling the frequency axis.
• Which adverse effect corrupts the signal $z_\delta(t)$?
• Then, write out a formula for $Z_\delta(j\omega)$. The simpler your formula, the better.

Problem 5 (LTI System Analysis.)

A causal LTI system has a transfer function

$$H(s) = \frac{(s + 4)(s^2 + 5s + 6)}{(s + 1)(s^2 - 2s + 3)}.$$ \hspace{1cm} (14)

Determine the differential equation that describes this system. Find the impulse response $h(t)$. Is the system stable? Does this system have a stable and causal inverse system?