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1 Discrete-Time Convolution

Let’sbegin our discussion of convolutionin discrete-time, sincelifeis somewhat easier inthat domain. We start witha
signd z[n] that will betheinput intoour LTI system H. First, we break «[n] into the sum of appropriately scaed and
shifted impulses, asin Figure 1(a), with theimpulse function defined in discrete-timeasin Figure 1(b). In Figure 1(a),
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(b) an impulse and the corresponding impulse response
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(c) scaling and shifting the impulse produces a scaled and shifted impulse response

x[n] y[n]
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(d) superposition of the three signals on the left from (c) gives x[n];
likewise, superposition of the three signals on the right gives y[n];
so if x[n] is input into our system with impulse response h[n],
the corresponding output is y[n]

Figure1: Discrete-time convolution.

we have decomposed z[n] into thesum of «[0]6[r], ¢[1]d[n — 1], and 2[2]4[n — 2]. In generdl, any «[n] can be broken
up intothesum of z[k]d[n — k], where 2[k] isthe appropriate scaling for an impulse§[n — k] that iscentered at n = k.
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In other words, we have:
e} = > a[klo[n — k]
k=—o0

Next, we are given h[n], the response of the system to an impulse centered a n = 0. In other words, if 6[n] is
the input into this system, the output is A[n]. Utilizing the homogeneity property of alinear system, if z[0][n] isthe
input, the output is z[0]A[n]. If 2[1]é[n — 1] is the input, the output is 2[0]A[n — 1] by both the homogeneity and
time-invariant propertiesof H. A similar argument can be made for #[2]6[n — 2] asinput producing z[2]h[n — 2] as
output. Thisisillustratedin Figure 1(c).

Finally, the superposition property of alinear system permitsus to add up the outputsto form the composite output
to the 2[n] from Figure 1(a). The final output y[»] isshown in Figure 1(d). Thisfinal output isjust:

2 Superposition Integral

Assume we have alinear system which performsthe operation /7 onitsinput z(¢), giving the output y(¢). In symbols,
y(t) = Hlze(t)]

H[/ z(T)6(t — 7)dT]

= /_00 (T )H[§(t — 7)]dr

h Hlz(m)d(t — 7)]dr

where we have used the sifting integrd to substitute for «(¢) in the second line, the additivity property of linearity
[21(t) + z2(t) — ya(t) + y2(¢)] inthethird, and the homogeneity property of linearity [z (t) — ay(t)] inthefourth.

What is H[§(t — 7)]? Well, first we'd better ask what 6(¢ — 7) is; it's an impulse function centered at ¢t = .
H[§(t — 7)] isthen the response of the system I at timet to an impulse centered at time ~. Let’s denote H[6(t — 7)]
by ¢(¢, 7). Notethat ¢ isafunction of two variables. I1t's afunction of ¢ because the response of the system is going
to be afunction of time. It'safunction of , because the system may be time varying, so i need to know where the
impulse is centered. If the system is time varying, the response of the system to an impulse centered at ¢ = 1 will
in genera be different from the response of the system to an impulse centered at ¢ = ¢,. Anyway, the output of the
system y(t) to any input () becomes

y(t) = /_00 z(m)g(t, T)dr

But if the system istime-invariant, we can further massage ¢(¢, ) into something more palatable. Consider atime
invariant system, which responds to an impulse centered at ¢t = a asin Figure 2(b); this system response is denoted
g(t, a). Now, because the system istimeinvariant, if i shift theimpulse by A, the system response should al so shift by
A, asinFigure 2(d). This new system responseis denoted g(t — A, a — A). Why the second argument shiftsis easy to
see; the second argument tells us where the impulse is centered, and since the center has been shifted by A, the new
center isa — A. Bigdeal. What about thefirst argument? The best way to see thisisto note what happens to the point
(p,q); it gets shifted by A also. Now let’'smake a = A. In other words, we shift the impulse to the origin by « units
and the system response gets shifted, by atota of « units, asin Figure 2(f).

So the output of the system y(¢) to any input = (¢) becomes

y(t) = /_00 z(T)g(t — 7, 0)dr
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Figure 2: (a) impulse centered at ¢ = «, (b) response of system to impulse centered at ¢ = «, (C) impulse centered at
t = a — A, (d) response of system to impulse centered at ¢t = a — A, (€) impulse centered at ¢t = 0, (f) response of
system to impulse centered at ¢ = 0. We assume that the system istimeinvariant, so that (c) and (d) are simply (a) and
(b) shifted. For the particular choice of a« = A, we obtain (€) and (f) from (c) and (d). Note what happens to the point
(p,9) in (b), (d), and (f).

We can then define a new impulse response h(t — ) = ¢(t — r,0) and finaly we have the superposition integral as
seen in lecture:

y(t) = /_00 z(T)h(t — T)dT

We then note that the superposition integral conveniently corresponds to the convolution operation, as previousy
seen in math classes. So, to summarize:

y(t) = =(t)*h(t)
= /_ z(T)h(t — T)dT

But why bother? Well, if you have the impulse response h(¢) of any LTI system, and i give you any input z(t),
you can tell me what y(¢) isby doing aconvolution of z and ~. That means you don’t have to keep on going down to
the lab and putting inputsinto your LTI system to figure out what your output is, since you can calculateit.

Keep in mind that the convolution integral with 2 (¢ — ) only works for linear timeinvariant systems.

Of coursg, in red IifeTM, many systems are nonlinear. but with appropriate linearization techniques, you can
approximate them by LTI systems in the regions of interest and analyze them using techniques developed in this
course.

3 Useful Convolution Properties

Convolutionis associative, commutative, and distributive over addition.

Exercises Prove the above statement. Use the definition of the superposition integral.
Convolutionisnot distributive over multiplication.

Exercise Consider u(t) * u(t) = w(t) * [Lu(t)] = [w(t) * L[u(t) * u(t)].
Convolving z(t) with:
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3(t) gives (t).
e 4(t) gives z(t). Theidentity under convolution is the unit impulse.
a(

t —tp) givesz(t — o).
o u(t) gives [*__ x(t)dt.

Exercises Prove these. Of thethree, thefirst isthe most difficult, and the second the easiest.

4 Timelnvariance, Causality, and BIBO Stability Revisited

Now that we have the convol ution operation, we can recast the test for time invariancein anew light. If z(t) — y(?),
welook toseeif #(t) x d(t — to) — y(t) *d(t — to).

The impulse response ~(t) of agiven system gives the response of that system to an impulse centered at ¢ = 0. If
the system is at rest and is causa, the impul se response should not begin to change from zero until it sees the impulse
att = 0. So an dternate way of proving causality isto determineif ~(¢) = Ofort < 0.

The superposition integra aso gives us another way of looking at BIBO stability. If h(¢) is not absolutlely
integrable (that is, if [~ | (t)|dt does not converge), then thereisno way that y(t) = [ x(7)h(t — 7)dr isgoing
to converge.

Exercise Isy(t) = [

oQ

z(7)z(t — 7)dr linear? Timeinvariant? Causal? Memoryless?

5 An Example

Of course, theory isnice, but if you can’'t apply it, it is not terribly useful.

This example is worked using a cookbook approach to convolution. There are more insightful ways of doing this
example. One method is hinted at in the exercise at the end of this section.

Anyway, the cookbook approach for LTI systems only:

1. Setupz(r).

2. Setup h(t — 7) by flipping.

3. Determineregions of integration by dragging ~(t — 7).
4. Do theintegration of the product of =(r) and h(t — 7).

The choice of which function is «# and and which is & is arbitrary. Since convolution is commutative, you'll
probably want to choose the simpler one (such as the one symmetric about ¢ = 0) to flip and shift. Too bad i haven’t
donethat in my example (note also that i have used ¢1 instead of 7— it made creating the figure slightly easier).

To generate (), use r in place of ¢.

To generate h(t — 7) isdightly harder. First, create h(7) from h(t) by replacing ¢ with 7. Then make h(—7) by
flipping ~(7) about = = 0. Finally, realize h(t — ) by relabeling the pointson the r axis, 7 = a becomesr = ¢ + a.
Note that by increasing ¢, (¢ — ) moves to theright.

At this point in time, reread the previous paragraph and try to figure out why you relabd the point - = a as
T =t+a (hint: draw ~(0—7) and ~(1— ), and then generalize). Try not to confuse ~ with ¢. The difference between
t and T istheindex into A.

Determining the different regions of integration isthe most difficult step. Wedrag ~(t — 7) over z(r) by changing
thevalue of ¢ (not 7). We then look for values of ¢t where:

e both h(t — 7) and z(r) are nonzero (if one of them were zero, their product would be zero, and the integral
would betrivia).

o thelimitson theintegral will change.
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Figure 3: An example of theflip and drag convolution technique.
In my example, h(t — r) and z(r) are both nonzero only betweent = —2 and ¢t = 4. We have the following
regions of integration:
0 ift< -2
fizx(r)h(t—r)dr if —2<t<0
y(t) =4 [ e(r)h(t —r)dr ifO<t<?2
ftz_zx(r)h(t—r)dr if2<t<4
0 ift >4

For -2 <t <0:

t
/4(7’—1—2)d7’ = 27'2—1—87'|t_2

= 2°4+8— (-8
= 2(t+2)?2
ForO<t< 2
0 ¢
/ 4t + 2)dr + / 4(—1+2)dr = [27'2 + 87']|?_2 + [—27'2 + 8714
t—2 0
= 2t—-22-8(t—2) —2>+8t
= 42 + 848
= —4tP-2t-2)
For2<t< 4
2
/ (-1 4 2)dr = —2r% 4 87'|t2_2
t—2

= 2(t—2)2—8(t—2)—|—8
= 2(t—4)2
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Does this make sense? Well, the product of = and & increases fromO at ¢t = —2toamaximum valueat ¢ = 1 and
then falls back to zero a ¢ = 4. Note that thereisno discontinuityat ¢ = —2,¢ = 0,7 = 2, ort = 4. In generdl, if
your = and h are piecewise continuous, y should also be continuous.

Exercise Redo thisexample. Then try it for the same z(), but with 4(¢) = 4for only —1 < ¢ < 2, zero elsewhere.
Exercise Redo thisexample. However, consider the pul se as the sum of two steps, and the triangle as the sum of three
ramps. Do only one convol ution of a step and aramp, and then use linearity and timeinvariance to construct the whole
solution.

6 A Look Ahead

More convolution fun follows. If you are uncomfortable with how to do it, try working some of the examples in the
textbook or asking any of us for help.



