1. (30 pts) DFT (Lec. 11,12,13 DFT H.O.)
Consider the signal flow diagram shown in Figure 1. For each window \(w(t) \), signal \(x(t) \), and sampling combination below, sketch \(x(t), x_w(t), x_δ(t), x'(t) \) and their magnitude spectra. Also sketch magnitude and phase for \(X[k] \) (derived from \(X'(j\omega) \)).

i. Let \(w(t) = \Pi(\frac{t}{T_o}), T_o = 8T_s, T_s = 1/3 \) sec, \(x(t) = \cos(3\pi t/2) \).

ii. Let \(w(t) = \Pi(\frac{2t}{T_o}), T_o = 8T_s, T_s = 1/3 \) sec, \(x(t) = \cos(3\pi t/2) \).

iii. Let \(w(t) = \Pi(\frac{2(t-T_o/4)}{T_o}), T_o = 8T_s, T_s = 1/3 \) sec, \(x(t) = \cos(3\pi t/2) \).

\[
\begin{align*}
&x(t) & x'(t) & \sum_\delta(t-nT_o) \\
&w(t) & & \sum_\delta(t-nT_s) \\
&x_\delta(t) & x_w(t) & \Sigma \delta(t-nT_o)
\end{align*}
\]

Fig. 1. DFT equivalent block diagram.

2. (20 pts) DFT (Lec. 11,12, DFT H.O.)
The DFTs of the signals \(x[n] = \cos(\omega_o(\frac{nT_o}{N} - \tau)) \) and \(y[n] = \cos(\omega_o \frac{nT_o}{N}) \) are calculated, with \(\omega_o = 2\pi 13.7 \), \(n = 0..255 \), \(T_o = 1 \) sec, and \(N = 256 \), as shown below for samples \(X[0]...X[31] \), and \(Y[0]...Y[31] \).

a) Using reasoning as in problem 1 above, explain the differences between the DFT of \(x[n] \) and \(X(j\omega) \), the FT of \(x(t) = \cos(\omega_o t) \).

b) \(Y[k] \) is complex. A time shift \(\tau \) was used to make \(X[k] \) pure real. Determine this value of \(\tau \), and show using the DFT analysis equation why \(X[k] \) is real.
3. (30 pts) Lec14 OW Ch. 7
(Refer to OW Fig. 7.37). The procedure for interpolation or upsampling by an integer factor \(N \) can be thought of as a cascade of two operations. The first operation, involving system A, corresponds to inserting \(N-1 \) zero-sequence values between each sequence value of \(x[n] \), such that:
\[
 x_p[n] = x_d[n/N] \quad \text{for} \ n = 0, \pm N, \pm 2N, \ldots \text{and 0 otherwise.}
\]
For exact bandlimited interpolation, \(H(e^{j\omega}) \) is an ideal low-pass filter.

a. Determine whether or not system A is linear.
b. Determine whether or not system A is time invariant.
c. For \(X_d(e^{j\omega}) \) as shown below, and with \(N = 3 \), sketch \(X_p(e^{j\omega}) \).
d. For \(N = 3 \), \(X_d(e^{j\omega}) \) as shown below, and \(H(e^{j\omega}) \) appropriately chosen for exact bandlimited interpolation, sketch \(X(e^{j\omega}) \).

\[
\begin{array}{c}
\omega = -\pi & \quad 0 & \quad \pi & \quad 2\pi \\
X_d(e^{j\omega}):
\end{array}
\]

4. (20 pts) Upsampling, Lec 14, Ch. 7
Download PS6-upsample.ipynb and music.wav from the class web page.
The bandlimited sound sample \(x[n] \) has been down sampled to 8820 Hz. Upsample back to 44.1 kHz, and use an appropriate DFT interpolation filter to create \(y[n] \) by filling in missing samples.
a) Plot the magnitude of the DFT for \(x \) and \(y \), and specify the interpolation filter \(H[k] \).
b) Plot \(x[8000 : 8200] \) and \(y[40000 : 41000] \).
c) Save and listen to the upsampled and interpolated signal. How does it compare to the original signal?