

EECS 120: Signals and Systems
Fall Semester 1998

Example of Fourier Series in the Limit of a Long Period

Signal $x(t)$ is a square wave with period T and pulse width $2 T_{s}$.
Fourier series representation: $x(t)=\sum_{k=-\infty}^{\infty} X[k] e^{j k \omega_{0} t}$, where $X[k]=\frac{2 T_{s}}{T} \operatorname{sinc}\left(k \frac{2 T_{s}}{T}\right)$ and $\omega_{0}=\frac{2 \pi}{T}$.
Note that as $T \rightarrow \infty$, we obtain an isolated pulse, which is an aperiodic signal. In this limit, $\omega_{0} \rightarrow 0$, and, although k is a discrete variable, $k \omega_{0}$ approaches a continuous variable. In this limit, a plot of $2 \pi X[k] / \omega_{0}$ versus $k \omega_{0}$ approaches a continuous curve.

In the plots below, the Fourier series representations of $x(t)$ include terms for $-64 \leq k \leq 64$.

