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Prerequisites for EECS 120

EECS 120 requires Math 53 and Math 54, and either EECS 20 or EECS 40, as prerequisites. In par
the following subjects are heavily used in the course. Go through the review questions below to mak
you can work them.

Integration: know how to integrate functions of one variable, especially integrals with infinite limits, a
those involvinge.Be familiar with change of variables and integration by parts.

Complex numbers: understand both rectangular and polar representations. Be able to convert from
form to another and to perform basic arithmetic operations on complex numbers.

Trigonometry: be familiar with identities for powers of sines and cosines, and sines and cosines o
sum and difference of two angles.Know the complex-exponential representations of sine and cosine fu
tions. Be familiar with Euler’s formula.

Linear Algebra: be able to add, multiply, invert and transpose matrices. Be comfortable solving sys
of linear equations.

Differential Equations: be able to solve simple first- and second-order linear differential equations.

Prerequisite Test

Linear Algebra

1. Consider the following matrices:

.

a. InvertA andB.

b. CalculateAX. How many solutions does have?

Integration

2. Evaluate the following integrals:

a. , where is the unit impulse function.

b. .

c. , where is the unit step function.

Complex Numbers

3. Answer the following:
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a. What is in rectangular form?

b. What is in polar form?

Trigonometry

4. Show the following:

a. Prove by using complex exponentials.

b. Prove by use of the relations and .

c. State Euler’s theorem and explain in one sentence how it is used in phasor analysis.

Differential Equations

5. Solve the following differential equation, assuming zero initial conditions, and assuming that

for :

.

Solutions

1.

a. The inverse of a matrixA is , where is the determinant ofA and
is the adjoint matrix.
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b.

.

has only one solution: . In fact, for any matrixY, has only one
solution: .

2.

a. by the definition of .

b. Doing it the hard way:

Or, you can realize that .

c. Since

,

3.

a.

,

b.

, .

Alternative approach:

,

which can be shown to equal .
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l part

:

4.

a. Recall that

Using this,

=

b. Using

, ,

c. Euler’s theorem says that

.

This allows us to take the real part of a complex exponential and obtain a cosine, meaning th
can treat a sinusoid as a complex exponential to simplify a calculation, and then take the rea

at the end of the calculation to get back a sinusoid.

5. Taking the Laplace transform of the differential equation and assuming zero initial conditions:

,

where and are the Laplace transforms of and , respectively. Solving for

Doing a partial-fraction expansion:

, , .

Inverting and using the convolution property of Laplace transforms:

,

where the symbol denotes convolution.
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