Course Organization and Syllabus

Instructor:
Professor Joseph M. Kahn, 514 Cory, 3-8848, jmk@eecs, http://www.eecs.berkeley.edu/~jmk.
OH: M 4-5, W 1-2. Secretary: Dianna Bolt, 558 Cory, 3-6683, dbolt@eecs.

Teaching Assistants:
Andrew Hatch, ahatch@eecs, OH: M 11-1 in 297 Cory.
Thomas Henderson, tomh@cs, OH: Tu 4-6 in 297 Cory.

Class Meetings: M W 2-4 pm, 1 LeConte Hall.

Section Meetings: 101: Tu 8:30-9:30, 293 Cory (Hatch), 102: Th 11-12, 293 Cory (Henderson), 103: F 9-10, 106 Moffitt (Henderson), 104: F 10-11, 3111 Etcheverry (Hatch). Regardless of which section you are officially enrolled in, feel free to attend any section(s) you wish to.


WWW Site: announcements, handouts, and homework assignments (but not solutions) will be posted at http://www-inst.eecs.berkeley.edu/~ee120.

Official Prerequisites: Math 53 and 54 and EECS 40. EECS 20 may substitute for EECS 40.

Accompanying Laboratory: There is a one-unit laboratory, EECS 120L, that can be taken concurrently with EECS 120. This lab provides hands-on experience with real signals and systems that illustrate the principles of EECS 120. You must sign up for this class separately from EECS 120.

Self-test: This quiz, distributed on the first day of class, will help you evaluate possible deficiencies in your mathematical background.

Grading: Homework (20%), First Midterm (16%), Second Midterm (16%), Final (48%).

Examinations: All exams will be closed-book. At the first midterm, you will be permitted to bring a single page of handwritten notes (8-1/2 by 11 inches, two-sided). At the second midterm, you will be permitted two pages, while at the final, you may bring three pages. No calculators will be permitted. As the exams will provide space in which to work the problems and write the answers, no blue books will be required.

Homework: There will be about twelve homework assignments during the semester. In most cases, assignments will be handed out on Mondays, and will be due at the beginning of class on the Wednesday nine days later. No homework will be due during midterm weeks. Late HW will not be accepted. A group of up to three students may work together and turn in a single homework assignment bearing all their names, for which they will earn a common grade.

Matlab Assignments: About 25% of the homework will involve simple numerical exercises using MATLAB. Please turn in any graphs you are asked to plot, along with listings of your MATLAB scripts. The exercises may require the use of some functions from the MATLAB Signal Processing and Control Toolboxes. All of this software is available on EECS instructional Unix and Windows NT computers. You can access the Unix computers with your usual named EECS account, i.e., you do not need a special class account. If you have been assigned an NT account for another class, you can use that to access the NT systems. The following computer facilities are available for your use: Unix: 117 Cory, 199 Cory; Windows NT: 105 Cory, 119 Cory. Note: the computers in 105 and 119 Cory are designated primarily for EECS 20 and CS 152, respectively. Students in these classes have first priority in accessing these systems, particularly if they have signed up in advance.
Obtaining a Named Computer Account: If you are not an EECS major or are a new student, you should obtain a new named account on the EECS instructional machines. Go to one of the EECS Unix instructional labs (e.g., 199 Cory or 273 Soda) and log in to one of the computers as “newacct”. Detailed instructions are posted on the walls of those labs. If the “newacct” program rejects you, it is probably because your name is not on the TeleBears enrollment list for EECS 120. In that case, please send e-mail to one of the TAs, who will convey your name to the appropriate person (include your student identification number in the message).

Syllabus: This is a tentative weekly schedule of material to be covered. You are responsible for reading the required text. It is important that you don't fall behind the class. The pace of the course is rapid, and the material is cumulative.

Weeks 1-2 (8/24, 8/26, 8/31): Introduction to Signals and Systems
Continuous-time and discrete-time (CT and DT) signals and systems. Classification of signals. Energy and power signals. Operating on signals to produce new signals. Sinusoids, complex exponentials, step and impulse functions. Classification of systems (linearity, time-invariance, causality, memory, invertibility).
Reading: HV Sect. 1.1-1.8.

Weeks 2-4 (9/2, 9/9, 9/14, 9/16): Time-Domain Properties of Linear, Time-Invariant Systems
Convolution. Impulse response and superposition integral or sum for linear, time-invariant (LTI) systems. Frequency response of LTI systems. LTI systems characterized by differential or difference equations. LTI systems characterized by block diagrams.
Reading: HV Sect. 2.1-2.5 (skip Sect. 2.6 on state variables).

Weeks 5-7 (9/21, 9/23, 9/28, 9/30, 10/5, 10/7): Fourier Representations of CT and DT Signals
Reading: HV Sect. 3.1-3.6.

Midterm 1: Wednesday, 10/7, in class, 60 minutes.

Weeks 8-9 (10/12, 10/14, 10/19, 10/21): Applications of Fourier Representations
Reading: HV Sect. 4.1, 4.2 (skip state variable sect.), 4.3-4.5, 4.6 (skip subsampling sect.), 4.7, 4.9, 8.2, 8.3. You may wish to read Sect. 4.8, 4.10, 4.11.

Weeks 10-11 (10/26, 10/28, 11/2, 11/4): Communication Systems
Reading: HV Sect. 5.1-5.10.

Reading: HV Sect. 6.1-6.6, 6.7 (skip state variable sect.), 8.5 (read sect. on Butterworth filters only), 9.1-9.2, B.1.

Midterm 2: Wednesday, 11/11, in class, 60 minutes.

Reading: HV Sect. 7.1-7.8, B.2.

Final Exam: Group 20, Wednesday, December 16, 5-8 p.m., room to be announced.