1 (a)

\[H(X_1, X_2) = - \sum_{x_1} \sum_{x_2} \Pr(X_1 = x_1, X_2 = x_2) \log \Pr(X_1 = x_1, X_2 = x_2) \]

\[= - \sum_{x_1} \sum_{x_2} \Pr(X_1 = x_1, X_2 = x_2) \log \Pr(X_1 = x_1) \Pr(X_2 = x_2 | X_1 = x_1) \]

\[= - \sum_{x_1} \sum_{x_2} \Pr(X_1 = x_1, X_2 = x_2) \log \Pr(X_1 = x_1) \]

\[- \sum_{x_1} \sum_{x_2} \Pr(X_1 = x_1, X_2 = x_2) \log \Pr(X_2 = x_2 | X_1 = x_1) \]

\[= - \sum_{x_1} \Pr(X_1 = x_1) \log \Pr(X_1 = x_1) \]

\[- \sum_{x_1} \sum_{x_2} \Pr(X_1 = x_1, X_2 = x_2) \log \Pr(X_2 = x_2 | X_1 = x_1) \]

\[= H(X_1) + H(X_2 | X_1) \]

(b) By application of part (a) we have

\[H(X_1, X_2, X_3) = H(X_1) + H(X_2, X_3 | X_1) \]

\[= H(X_1) + H(X_2 | X_1) + H(X_3 | X_2, X_1) \]

(c) If \(X_1 \) and \(X_3 \) are conditionally independent given \(X_2 \) then \(\Pr(X_3 | X_1, X_2) = \Pr(X_3 | X_2) \).
Thus
\[
H(X_3|X_2, X_1) = \sum_{x_1} \sum_{x_2} \Pr(X_1 = x_1, X_2 = x_2) \sum_{x_3} \Pr(X_3 = x_3|X_2 = x_2, X_1 = x_1) \log \Pr(X_3 = x_3|X_2 = x_2, X_1 = x_1)
\]
\[
= \sum_{x_1} \sum_{x_2} \Pr(X_1 = x_1, X_2 = x_2) \sum_{x_3} \Pr(X_3 = x_3|X_2 = x_2) \log \Pr(X_3 = x_3|X_2 = x_2)
\]
\[
= \sum_{x_2} \Pr(X_2 = x_2) \sum_{x_3} \Pr(X_3 = x_3|X_2 = x_2) \log \Pr(X_3 = x_3|X_2 = x_2)
\]
\[
= H(X_3|X_2)
\]

2 (a) A probability distribution \(\pi(x) \) is a stationary distribution for a Markov chain with states \(x \in S \) if
\[
\sum_{x \in S} \pi(x) \Pr(x, y) = \pi(y)
\]
for all states \(y \in S \), where \(\Pr(x, y) \) is the probability of transitioning from state \(x \) to state \(y \). For the Mickey mouse chain the stationary distribution is \(\pi(1) = \frac{1}{2} \) and \(\pi(2) = \frac{1}{2} \) for \(\alpha \in [0, 1) \). For \(\alpha = 1 \) the Markov chain is reducible and the stationary distribution is not unique, in fact all distributions \(\pi(x) \) are stationary in this case, as can be verified from equation (1).

(b) Let \(\alpha \) denote the self-transition probability.
\[
\Pr(X_n = 0) = \alpha \Pr(X_{n-1} = 0) + (1 - \alpha)(1 - \Pr(X_{n-1} = 0))
\]
\[
= 1 - \alpha + (2\alpha - 1)P(X_{n-1} = 0)
\]
The solution to the difference equation \(y_n = a + by_{n-1} \) is \(y_n = a(1 - b^{n-1})/(1 - b) + b^{n-1}y_1 \). Thus for \(\alpha \neq 0 \) the distribution is
\[
\Pr(X_n = 0) = \frac{(1 - \alpha)(1 - (2\alpha - 1)^{n-1})}{2\alpha} + (2\alpha - 1)^{n-1}p
\]
and \(\Pr(X_n = 1) = 1 - \Pr(X_n = 0) \). For \(\alpha = 0 \) we get \(\Pr(X_n = 0) = p \) if \(n \) is odd and \(\Pr(X_n = 0) = 1 - p \) if \(n \) is even. For all \(p \) and \(\alpha \in (0, 1) \) the distribution of \(X_n \) always converges to the stationary distribution but for \(\alpha = 0 \) the distribution of \(X_n \) is always equal to the stationary distribution for \(p = 1/2 \) but never equal to it for \(p \neq 1/2 \).
(c)

\[
H = \lim_{n \to \infty} \frac{H(X_1, \ldots, X_n)}{n} = \lim_{n \to \infty} \frac{1}{n} H(X_1) + \frac{1}{n} \sum_{i=2}^{n} H(X_n | X_{n-1}) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=2}^{n} H(X_n | X_{n-1}).
\]

For \(\alpha \notin \{0, 1\} \) we have

\[
H = H(X_2 | X_1) = -\alpha \log \alpha - (1 - \alpha) \log(1 - \alpha)
\]

and for \(\alpha \in \{0, 1\} \) we have \(H(X_n | X_{n-1}) = 0 \) so \(H = 0 \). Thus the limit exists for all \(\alpha \) but its value depends on whether \(\alpha \in \{0, 1\} \) or not. It does not depend on the initial distribution.

(d) Solving equation (1) for the stationary distribution we have

\[
\pi(0) = \frac{\alpha_1 - 1}{\alpha_0 + \alpha_1 - 2}.
\]

and \(\pi(1) = 1 - \pi(0) \). The entropy rate exists for all \(\alpha_0, \alpha_1 \in [0, 1] \) but it’s value is zero if either of the \(\alpha_i = 1 \). The entropy rate does not depend on the initial distribution.

3 (a) The Huffman coding algorithm groups the 0.1 and 0.4 probability symbols into a supersymbol of probability 0.5 and then groups this with the 0.5 probability symbol. The codeword assignments are thus \(a = 0 \), \(b = 10 \) and \(c = 11 \). The expected length is then \(\bar{L}_{\text{min}} = 0.5 * 1 + 0.4 * 2 + 0.1 * 2 = 1.5 \) bits/symbol.

(b) Now \(X^2 \in \{aa, ab, ac, ba, bb, bc, ca, cb, cc\} \) with probabilities

\{
0.25, 0.2, 0.05, 0.2, 0.16, 0.04, 0.05, 0.04, 0.01
\}

respectively. Creating a Huffman tree and assigning codewords results in an average length of 2.75 bits per \(X^2 \) symbol which is \(\bar{L}_{\text{min},2} = 1.375 \) bits/symbol.

(c) By concatenating two identical versions of the code for \(X \) from part (a) we can create a prefix-free code for \(X^2 \). The average length of this code is \(2\bar{L}_{\text{min}} \) bits per \(X^2 \) symbol or \(\bar{L}_{\text{min}} \) bits per symbol. As this average length must be either equal to or longer than the average length of the optimal code we have \(\bar{L}_{\text{min}} \geq \bar{L}_{\text{min},2} \).
4 (a) It is uniquely decodable because at each step if the decoder reads 0 then it will read the next 3 bits and convert them to integer and decode correctly. If it reads 1 then it will decode 8 a’s and move to the next code.

\[
\begin{align*}
E[\text{number of bits per B}] &= \sum_{i=0}^{\infty} (i + 4)P\{8i+k \text{ consecutive a’s for some } 0 \leq k \leq 7 \} \\
&= \sum_{i=0}^{\infty} (i + 4)(0.9^i + \ldots + 0.9^{i+7}) 0.1 \\
&= \sum_{i=0}^{\infty} (i + 4)0.9^i (1 - 0.9^8) \\
&= (1 - 0.9^8) \left(\frac{4}{1 - 0.9^8} + \sum_{i=0}^{\infty} i(0.9)^i \right) \\
&= 4 + (1 - 0.9^8) \frac{0.9^8}{1 - 0.9^8} \frac{1}{1 - 0.9^8} \approx 4.75
\end{align*}
\]

(c) Define the random variable \(Y_i \) to be equal to 1 if we have b at position i, otherwise zero. We are interested in

\[
\frac{1}{n} \sum_{i=1}^{n} Y_i
\]

By WLLN for any \(\epsilon > 0 \) we have,

\[
P\{|\frac{1}{n} \sum_{i=1}^{n} Y_i - E[Y]| \geq \epsilon\} \rightarrow 0, \quad \text{as } n \text{ increases}
\]

Since \(E[Y] = 0.1 \) it gives the desired result.

(d) \(0.1 \times 4.75 = 0.475 \).

5 (a) Initially encode the window with 1024 bits then

| Window Pointer | Encoded String (u,n) | log w | 2|log n| + 1 | total bits |
|----------------|----------------------|-------|-------|------|-----------|
| 1024 | (1.3976) | 10 | 23 | 33 |
| 5000 | (1,1) | 0 | 2 | 2 |
| 5001 | (1.3999) | 10 | 23 | 33 |
| 9000 | (1,1) | 0 | 2 | 2 |
| 9001 | (1.999) | 10 | 19 | 29 |
(b) number of bits = $1024 + 33 + 2 + 33 + 2 + 29 = 1123$

(c) Initially encode the window with 1024 bits then

<table>
<thead>
<tr>
<th>Window Pointer</th>
<th>Encoded String (u,n)</th>
<th>$\log w$</th>
<th>$2\lceil \log n \rceil + 1$</th>
<th>total bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(1,4992)</td>
<td>3</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>5000</td>
<td>(1,1)</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5001</td>
<td>(1,3999)</td>
<td>3</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>9000</td>
<td>(1,1)</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9001</td>
<td>(1,999)</td>
<td>3</td>
<td>19</td>
<td>22</td>
</tr>
</tbody>
</table>

Number of bits = 88.

(d) Create the markov chain such that:

\[
P(X_{i+1} = 1 | X_i = 0) = \frac{P(X_{i+1} = 1, X_i = 0)}{P(X_i = 0)}
\]

\[
P(X_{i+1} = 0 | X_i = 1) = \frac{P(X_{i+1} = 0, X_i = 1)}{P(X_i = 1)}
\]

Now the empirical average is a good estimate for these values:

\[
P(X_i = 0) \approx \frac{\text{number of zeros}}{10^4} = 0.6
\]

\[
P(X_i = 1) \approx \frac{\text{number of ones}}{10^4} = 0.4
\]

\[
P(X_{i+1} = 0, X_i = 1) \approx \frac{\text{number of (1-0)'s}}{10^4} = 10^{-4}
\]

\[
P(X_{i+1} = 1, X_i = 0) \approx \frac{\text{number of (0-1)'s}}{10^4} = 10^{-4}
\]

Therefore

\[
P(X_{i+1} = 1 | X_i = 0) \approx \frac{1}{6000}
\]

\[
P(X_{i+1} = 0 | X_i = 1) \approx \frac{1}{4000}
\]

(e) Assuming that the Markov chain is in stationary distribution,

\[
\lim_{n \to \infty} \frac{H(X_1, \ldots, X_n)}{n} = \lim_{n \to \infty} \frac{H(X_1) + H(X_2 | X_1) + H(X_3 | X_2) + \ldots + H(X_n | X_{n-1})}{n} = H(X_2 | X_1)
\]

Now

\[
H(X_2 | X_1) = \frac{3}{5} H(10^{-4}) + \frac{2}{5} H(10^{-4}) = H(10^{-4})
\]