Goals for Today’s Class

- EE 122 overview
 - Goals of the course
 - Structure of the course
 - Instructor & TAs
 - Prereqs & assignments
 - Course grading
 - Academic policies
- What makes networking challenging
 - The fundamental issues we must grapple with to build a global Internet
What You Learn in This Course

- **Insight:** key concepts in networking
 - Protocols
 - Layering
 - Resource allocation
 - Security
 - Naming
- **Knowledge:** how the Internet works
 - Internet architecture
 - IP protocol suite
 - Applications (Web, e-mail, P2P, ...)
- **Skill:** network programming
 - Socket programming
 - Designing and implementing protocols

What This Course Is and Isn’t

- EE122 comes in two flavors:
 - **Spring** offering: taught by EE faculty
 - More emphasis on diverse link technologies, wireless & mobility, communication theory & simulation
 - **Fall** offering: taught by CS faculty
 - More emphasis on Internet technology, applications, practice & empiricism / hands-on
 - Differences aren’t huge, though
- **My particular emphasis:**
 - Network architecture, naming, resource allocation
 - Overlays, peer-to-peer applications
Structure of the Course (1st Half)

- Start at the top
 - Protocols: how to structure communication
 - Sockets: how applications view the Internet
- Then study the “narrow waist” of IP
 - IP best-effort packet-delivery service
 - IP addressing and packet forwarding
- And how to build on top of the narrow waist
 - Transport protocols (TCP, UDP)
 - Domain Name System (DNS)
 - Applications (Web, email, file transfer)
- Looking underneath IP
 - Link technologies (Ethernet, bridges, switches)

Structure of the Course (2nd Half)

- How to get the traffic from here to there …
 - Routing (intradomain, interdomain)
 - Glue (ARP, DHCP, ICMP)
- … in a way that’s both efficient and stable
 - How much data to send without clogging the sender (flow control) or the network (congestion control)
 - With some assurance (quality of service) … or not
- How to control network traffic …
 - Enforcing policy
 - Defending against attacks
- … and scale it to potentially huge structures
 - Peer-to-peer & overlays
Instructor

- Ion Stoica (istoica@cs.berkeley.edu)
 - Research focus
 - Network architectures
 - Tracing & debugging distributed systems
 - Overlay & p2p networks
 - http://www.cs.berkeley.edu/~istoica/
 - Office hours M 1-2PM & W 2-3PM in 413 Soda
 - Phone: 643-4007
 - Email preferred!

TAs

- Lucian Popa (popa@eecs.berkeley.edu)
 - Office hours: W 1:30-2:30, F 11:30-12:30pm in 413 Soda
 - And by appointment
 - Section: W 12-1pm (299 Cory) & F 10-11am (293 Cory)
- David Zats (dzats@eecs.berkeley.edu)
 - Office hours: TT, 2:30-3:30 (location TBA)
 - And by appointment
 - Section: M 2-3pm (237 Cory), T 10-11am (299 Cory)
- Another TA will join next week
Brighten Godfrey

- pbg@cs.berkeley.edu
- 2008 graduate
- Will join UIUC in Fall 2009 as Assistant Professor
- Will help with teaching several lectures

Interact!

- Inevitably, you won’t understand something(s) … that’s my fault, but you need to help
- Come to office hours, request an appointment, communicate by e-mail
 - We are here to help, including general advice!
 - TAs first line for help with programming problems
- Give us suggestions/complaints/feedback as early as you can
- What’s your background? Tell us at
 - http://tinyurl.com/5rsdx5
Course Materials

- Textbooks
 - Note, we jump around in it a lot
 - Recommended & on reserve:
- Web site: http://inst.eecs.berkeley.edu/~ee122/
 - Updated frequently, including lecture slides
 - Note: if you are following the slides during lecture, please don’t use them to answer questions I ask
- Mailing list: ee122@lists.berkeley.edu
 - Sign up: https://calmail.berkeley.edu/manage/list/listinfo/ee122@lists.berkeley.edu

Class Workload

- Four homeworks spread over the semester
 - Strict due dates (no slip days!)
 - Unless otherwise specified, deadlines are **before** lecture starts
- Two projects
 - Chat application (teams of two)
 - Includes socket programming, client/server
 - Dynamic DNS (teams of two)
 - You design and implement a DNS server
 - C (or C++) **required**
 - Deadlines 11:50PM
 - These are **extensive** undertakings, particularly the second
- Exams
 - Midterm: **Monday, October 13** in class, 4-5:30PM
 - Final: **Thursday, December 18** location 277 Cory, 8-11AM
 - Closed book, open crib sheet
Prerequisites

- CS 61A, 61B
 - Programming, data structures, software engineering
 - Knowledge of C or C++
- Math 53 or 54
 - In fact, we’ll be relatively light on math, though your algebra should be very solid, you should know basic probability, and you’ll need to be comfortable with thinking abstractly
- Background material will not be covered in lecture. TAs will spend very little time reviewing material not specific to networking

Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homewor</td>
<td>20% (5% each)</td>
</tr>
<tr>
<td>Projects</td>
<td>40% (20+20)</td>
</tr>
<tr>
<td>Midterm exam</td>
<td>15%</td>
</tr>
<tr>
<td>Final exam</td>
<td>25%</td>
</tr>
</tbody>
</table>

- Course graded to mean of B
 - Relatively easy to get a B, harder to get an A or a C
 - 10% A, 15% A-, 15% B+, 20% B, 15% B-, 15% C+, 10% C
 - A+ reserved for superstars (1 or 2 per class)
 - Mean can shift up for an excellent class
 - For which the TAs have significant input
No Cheating

- Cheating means not doing the homework by yourself
- Fine to talk with other students about homeworks outside of class
 - Concepts, not specifics
- No copying, no Google, etc
- If you’re unsure, then ask
- We will do automated similarity detection on assignments.

5 Minute Break

Questions Before We Proceed?
What do this two have in Common?

- First printing press
- Key idea: splitting up text in individual components
 - E.g., lower, upper case letters
- Both lower the cost of distributing information book

The Internet

The ARPANet

- Paul Baran
 - RAND Corp, early 1960s
 - Communications networks that would survive a major enemy attack
- ARPANet: Research vehicle for “Resource Sharing Computer Networks”
 - 2 September 1969: UCLA first node on the ARPANet
 - December 1969: 4 nodes connected by phone lines

Johann Gutenberg (1398-1468)

The ARPANet

Paul Baran

The ARPANet

The ARPANet
ARPANet Evolves into Internet

<table>
<thead>
<tr>
<th>ARPANet</th>
<th>SATNet</th>
<th>PRNet</th>
<th>TCP/IP</th>
<th>NSFNet</th>
<th>Deregulation & Commercialization</th>
<th>SaS</th>
<th>ASP</th>
<th>AIP</th>
</tr>
</thead>
</table>

SATNet: Satellite network
PRNet: Radio Network

Web Hosting
Multiple ISPs
Internet2 Backbone
Internet Exchanges

Application Hosting
ASP: Application Service Provider
SaS: Software as a Service Provider (e-commerce toolkit, etc.)

ARPANET GEOGRAPHIC MAP, OCTOBER 1980

(Note: This map does not show ARPA's experimental satellite connections. Names shown are IMP names, not (necessarily) host names.)
Networking: Actually Not Boring

- How hard can it be?
- You just string a wire (or other signaling path) between two computers …
- … first one pushes bits down the link …
- … and the second one gets them up. Right?

- Where does it get tricky?
 What are the challenges?

Why Networking Is Challenging

- Fundamental challenge: the speed of light
- Question: how long does it take light to travel from Berkeley to New York?
- Answer:
 - Distance Berkeley → New York: 4,125 km
 - Traveling 300,000 km/s: 13.75 msec
Fundamental Challenge: Speed of Light

- Question: how long does it take an Internet “packet” to travel from Berkeley to New York?
- Answer:
 - For sure ≥ 13.75 msec
 - Depends on:
 - The route the packet takes (could be circuitous!)
 - The propagation speed of the links the packet traverses
 - E.g., in optical fiber light propagates at about $\frac{2}{3} \cdot c$
 - The transmission rate (bandwidth) of the links (bits/sec)
 - and thus the size of the packet
 - Number of hops traversed (store-and-forward delay)
 - The “competition” for bandwidth the packet encounters (congestion). It may have to sit & wait in router queues.
 - In practice this boils down to: ≥ 40 msec

Fundamental Challenge: Speed of Light

- Question: how many cycles does your PC execute before it can possibly get a reply to a message it sent to a New York web server?
- Answer:
 - Round trip takes ≥ 80 msec
 - PC runs at (say) 3 GHz
 - $3,000,000,000$ cycles/sec * 0.08 sec = $240,000,000$ cycles
 - Thus,
 - Communication feedback is always dated
 - Communication fundamentally asynchronous
Fundamental Challenge: Speed of Light

- **Question:** what about between machines directly connected (via a *local area network* or *LAN*)?
- **Answer:**

  ```
  % ping www.icir.org
  PING www.icir.org (192.150.187.11): 56 data bytes
  64 bytes from 192.150.187.11: icmp_seq=0 ttl=64 time=0.214 ms
  64 bytes from 192.150.187.11: icmp_seq=1 ttl=64 time=0.226 ms
  64 bytes from 192.150.187.11: icmp_seq=2 ttl=64 time=0.209 ms
  64 bytes from 192.150.187.11: icmp_seq=3 ttl=64 time=0.212 ms
  ```

- **200 µsec = 600,000 cycles**
 - Still a looong time …
 - … and asynchronous

Why Networking Is Challenging (con’t)

- **Fundamental challenge:** *components fail*
 - Network communication involves a chain of *interfaces, links, routers* and *switches* …
Examples of Network Components

Links
- Fibers
- Coaxial Cable

Interfaces
- Ethernet card
- Wireless card

Switches/routers
- Large router
- Telephone switch

Why Networking Is Challenging (con’t)

- Fundamental challenge: components fail
 - Network communication involves a chain of interfaces, links, routers and switches ...
 - … all of which must function correctly.
- Question: suppose a communication involves 50 components which work correctly (independently) 99% of the time. What’s the likelihood the communication fails at a given point of time?
 - Answer: success requires that they all function, so failure probability = 1 - 0.99^{50} = 39.5%.
- So we have a lot of components, which tend to fail ...
 - … and we may not find out for a looong time
Why Networking Is Challenging (con’t)

- Challenge: enormous dynamic range
 - Round-trip times (latency) vary 10 µsec’s to sec’s (10^5)
 - Data rates (bandwidth) vary from kbps to 10 Gbps (10^7)
 - Queuing delays inside the network vary from 0 to sec’s
 - Packet loss varies from 0 to 90+%
 - End system (host) capabilities vary from cell phones to supercomputer clusters
 - Application needs vary enormously: size of transfers, bidirectionality, need for reliability, tolerance of jitter
- Related challenge: very often, there is no such thing as “typical”. Beware of your “mental models”!
 - Must think in terms of design ranges, not points
 - Mechanisms need to be adaptive

Why Networking Is Challenging (con’t)

- Challenge: different parties must work together
 - Multiple parties with different agendas must agree how to divide the task between them
- Working together requires:
 - Protocols (defining who does what)
 - These generally need to be standardized
 - Agreements regarding how different types of activity are treated (policy)
 - Different parties very well might try to “game” the network’s mechanisms to their advantage
Why Networking Is Challenging (con’t)

- **Challenge:** incessant rapid growth
 - Utility of the network scales with its size
 ⇒ Fuels exponential growth (for more than 2 decades!)
 - Adds another dimension of dynamic range …
 - … and quite a number of ad hoc artifacts

Why Networking Is Challenging (con’t)

- **Challenge:** there are Bad Guys out there
- As the network population grows in size, so does the number of
 - Vandals
 - Crazies
- What really matters, though: as network population grows, it becomes more and more attractive to
 - Crooks
 - (and also spies and militaries)
7.1. ANCHETA would develop a worm which would cause infected
computers, unbeknownst to the users of the infected computers, to:
a. report to the IRC channel he controlled;
b. scan for other computers vulnerable to similar
infection; and
c. succumb to future unauthorized accesses, including
for use as proxies for spamming.

his worm caused 1,000 to 10,000 new bots to join his botnet over
the course of only three days.

73. ANCHETA would then advertise the sale of bots for the
purpose of launching DDoS attacks or using the bots as proxies to
send spam.
74. ANCHETA would sell up to 10,000 bots or proxies at a
time.
75. ANCHETA would discuss with purchasers the nature and
extent of the DDoS or proxy spamming they were interested in

79. ANCHETA would accept payments through Paypal.

103. In or about August 2004, ANCHETA updated his
advertisement to increase the price of bots and proxies, to limit
the purchase of bots to 2,000 "due to massive orders," and to warn,

<table>
<thead>
<tr>
<th>COUNT</th>
<th>APPROXIMATE DATES</th>
<th>APPROXIMATE NUMBER OF PROTECTED COMPUTERS ACCESSED WITHOUT AUTHORIZATION</th>
<th>APPROXIMATE PAYMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEVEN</td>
<td>November 1, 2004 through</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>November 19, 2004</td>
<td>26,975</td>
<td>$4,044.26 from Gammacash</td>
</tr>
<tr>
<td>EIGHT</td>
<td>November 16, 2004 through</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>December 7, 2004</td>
<td>8,744</td>
<td>$1,306.52 from LOUDCash</td>
</tr>
<tr>
<td>NINE</td>
<td>January 15, 2005</td>
<td>39,823</td>
<td>$6,282.12</td>
</tr>
</tbody>
</table>
Why Crooks Matter for Networking

- They (and other attackers) seek ways to misuse the network towards their gain
 - Carefully crafted “bogus” traffic to manipulate the network’s operation
 - Torrents of traffic to overwhelm a service (denial-of-service) for purposes of extortion / competition
 - Passively recording network traffic in transit (sniffing)
 - Exploit flaws in clients and servers using the network to trick into executing the attacker’s code (compromise)

- They do all this energetically because there is significant $$$ to be made
Why Networking Is Challenging (con’t)

- Challenge: you cannot reboot the Internet!
 - Everyone depends on the Internet
 - Businesses
 - Hospitals
 - Education institutions
 - ...
 - Cannot stop, fix, and restart it…
 - … akin to “changing the engine when you are in-flight”!

Summary

- Networking is about design in the presence of challenges/constraints:
 - Not akin to e.g. programming languages / compilers
 - Which have well-developed theories to draw upon
 - Much more akin to operating systems
 - Abstractions
 - Tradeoffs
 - Design principles / “taste”
- Next lecture: types of networks, protocols
 - Read through 1.3 of the Kurose/Ross book
 - Subscribe to the mailing list: ee122@lists.berkeley.edu
 - Take survey at: http://tinyurl.com/5rxd5