EE 122: IP Addressing

Ion Stoica (and Brighten Godfrey)
TAs: Lucian Popa, David Zats and Ganesh Ananthanarayanan

http://inst.eecs.berkeley.edu/~ee122/
(Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

Goals of Today’s Lecture

- IP addresses
 - Dotted-quad notation
 - IP prefixes for aggregation
 - Classful addresses
 - Classless InterDomain Routing (CIDR)
 - Special-purpose address blocks
- Address allocation
 - Hierarchy by which address blocks are given out
 - Finding information about an allocation
Designing IP’s Addresses

- Question #1: what should an address be associated with?
 - E.g., a telephone number is associated not with a person but with a handset
- Question #2: what structure should addresses have? What are the implications of different types of structure?
- Question #3: who determines the particular addresses used in the global Internet? What are the implications of how this is done?

IP Addresses (IPv4)

- A unique 32-bit number
- Identifies an interface (on a host, on a router, …)
- Represented in dotted-quad notation. E.g., 12.34.158.5:

<table>
<thead>
<tr>
<th>12</th>
<th>34</th>
<th>158</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001100</td>
<td>00100010</td>
<td>10011110</td>
<td>00000101</td>
</tr>
</tbody>
</table>

Hierarchical Addressing in U.S. Mail

- Addressing in the U.S. mail
 - Zip code: 15232
 - Street: Forbes Avenue
 - Building on street: 5000
 - Apartment: 61B
 - Name of occupant: Ion Stoica

- Forwarding the U.S. mail
 - Deliver letter to the post office in the zip code
 - Assign letter to mailman covering the street
 - Drop letter into mailbox for the building/room
 - Give letter to the appropriate person

Hierarchical Addressing: IP Prefixes

- Divided into network (left) & host portions (right)
- 12.34.158.0/24 is a 24-bit prefix with 2^9 addresses
 - Terminology: "Slash 24"
IP Address and a 24-bit Subnet Mask

Address

12 34 158 5

00001100 00100010 10011110 00000101

11111111 11111111 11111111 00000000

255 255 255 0

Mask

Addressing Hosts in the Internet

- The Internet is an “inter-network”
 - Used to connect networks together, not hosts
 - Needs a way to address a network (i.e., group of hosts)

LAN = Local Area Network
WAN = Wide Area Network
Routers

- Router consists of:
 - Set of input interfaces where packets arrive
 - Set of output interfaces from which packets depart
 - Some form of interconnect connecting inputs to outputs

- Router implements:
 - Forward packet to corresponding output interface
 - Manage bandwidth and buffer space resources

Forwarding Table

- Store a mapping between IP addresses and output interfaces:
 - Forward an incoming packet based on its destination address
Scalability Challenge

- Suppose hosts had arbitrary addresses
 - Then every router would need a lot of information
 - ...to know how to direct packets toward the host

LAN 1
- 1.2.3.4
- 5.6.7.8
- 2.4.6.8

LAN 2
- 1.2.3.5
- 5.6.7.9
- 2.4.6.9

Scalability Improved

- Number related hosts from a common subnet
 - 1.2.3.0/24 on the left LAN
 - 5.6.7.0/24 on the right LAN

LAN 1
- 1.2.3.4
- 1.2.3.7
- 1.2.3.156

LAN 2
- 5.6.7.8
- 5.6.7.9
- 5.6.7.212

forwarding table
Easy to Add New Hosts

- No need to update the routers
 - E.g., adding a new host 5.6.7.213 on the right
 - Doesn’t require adding a new forwarding entry

LAN 1: 1.2.3.4 1.2.3.7 1.2.3.156
LAN 2: 5.6.7.8 5.6.7.9 5.6.7.212

Classful Addressing

- Class A: if first byte in [0..127], assume /8 (top bit = 0)
 - Very large blocks (e.g., MIT has 18.0.0.0/8)

- Class B: first byte in [128..191] ⇒ assume /16 (top bits = 10)
 - Large blocks (e.g., UCB has 128.32.0.0/16)

- Class C: [192..223] ⇒ assume /24 (top bits = 110)
 - Small blocks (e.g., ICIR has 192.150.187.0/24)
 - The "swamp" (many European networks, due to history)
Classful Addressing (cont’d)

- Class D: [224..239] (top bits 1110)
- Multicast groups
- Class E: [240..255] (top bits 11110)
 - Reserved for future use

What problems can classful addressing lead to?
- Only comes in 3 sizes
- Routers can end up knowing about a lot of class C's

Classless Inter-Domain Routing (CIDR)

Use arbitrary length prefixes
Use two 32-bit numbers to represent a network.
Network number = IP address + Mask

IP Address : 12.4.0.0 IP Mask: 255.254.0.0

Address

Mask

Network Prefix for hosts

Written as 12.4.0.0/15 or 12.4/15
CIDR: Hierarchal Address Allocation

- Prefixes are key to Internet scalability
 - Addresses allocated in contiguous chunks (prefixes)
 - Routing protocols and packet forwarding based on prefixes

![CIDR Diagram]

Scalability: Address Aggregation

Provider is given 201.10.0.0/21 (201.10.0.x .. 201.10.7.x)

Routers in the rest of the Internet just need to know how to reach **201.10.0.0/21**. The provider can direct the IP packets to the appropriate **customer**.
But, Aggregation Not Always Possible

Multi-homed customer with 201.10.6.0/23 has two providers. Other parts of the Internet need to know how to reach these destinations through both providers. ⇒ /23 route must be globally visible

- Initial growth: super-linear; no aggregation
- Dot-com implosion; Internet bubble bursts
- Advent of CIDR allows aggregation: linear growth
- Internet boom: multihoming drives superlinear growth
- Back in business
Special-Purpose Address Blocks

- **Private addresses**
 - By agreement, not routed in the public Internet
 - For networks not meant for general Internet connectivity
 - Blocks: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16

- **Link-local**
 - By agreement, not forwarded by any router
 - Used for single-link communication only
 - Intent: autoconfiguration (especially when DHCP fails)
 - Block: 169.254.0.0/16

- **Loopback**
 - Address blocks that refer to the local machine
 - Block: 127.0.0.0/8
 - Usually only 127.0.0.1/32 is used

- **Limited broadcast**
 - Sent to every host attached to the local network
 - Block: 255.255.255.255/32

Scalability Through Non-Uniform Hierarchy

Summary:

- **Hierarchical** addressing
 - Critical for scalable system
 - Don’t require everyone to know everyone else
 - Reduces amount of updating when something changes

- **Non-uniform hierarchy**
 - Useful for heterogeneous networks of different sizes
 - Initial class-based addressing was far too coarse
 - Classless InterDomain Routing (CIDR) gains much more flexibility
5 Minute Break

Questions Before We Proceed?

Address Allocation
Obtaining a Block of Addresses

- Separation of control
 - Prefix: assigned to an institution
 - Addresses: assigned by the institution to their nodes
- Who assigns prefixes?
 - Internet Corporation for Assigned Names and Numbers
 - Allocates large address blocks to Regional Internet Registries
 - ICANN is politically charged
 - Regional Internet Registries (RIRs)
 - E.g., ARIN (American Registry for Internet Numbers)
 - Allocates address blocks within their regions
 - Allocated to Internet Service Providers and large institutions ($$)
 - Internet Service Providers (ISPs)
 - Allocate address blocks to their customers (could be recursive)
 - Often w/o charge

Figuring Out Who Owns an Address

- Address registries
 - Public record of address allocations
 - Internet Service Providers (ISPs) should update when giving addresses to customers
 - However, records are notoriously out-of-date
- Ways to query
 - UNIX: “whois –h whois.arin.net 169.229.60.27”
 - http://www.arin.net/whois/
 - …
Example Output for 169.229.60.27

University of California, Office of the President UCNET-BLK (NET-169-229-0-0-1)
169.229.0.0 - 169.233.255.255

University of California at Berkeley ISTDATA
(NET-169-229-0-0-2)
169.229.0.0 - 169.229.255.255

- ISTDATA – Information Services and Technology (IST) - Data Communication and Network Services

Are 32-bit Addresses Enough?

- Not all that many unique addresses
 - $2^{32} = 4,294,967,296$ (just over four billion)
 - Plus, some (many) reserved for special purposes
 - And, addresses are allocated in larger blocks
- And, many devices need IP addresses
 - Computers, PDAs, routers, tanks, toasters, …
- Long-term solution (perhaps): larger address space
 - IPv6 has 128-bit addresses ($2^{128} = 3.403 \times 10^{38}$)
- Short-term solutions: limping along with IPv4
 - Private addresses
 - Network address translation (NAT)
 - Dynamically-assigned addresses (DHCP)
Network Address Translation (NAT)

- Before NAT...
 - Every machine connected to the Internet had a unique IP address
Network Address Translation (cont’d)

- Independently assign addresses to machines behind same NAT
 - Usually in address block 192.168.0/16
- Use port numbers to multiplex demultiplex internal addresses
Network Address Translation (cont’d)

- Independently assign addresses to machines behind the same NAT
 - Usually in address block 192.168.0.0/16
- Use port numbers to multiplex demultiplex internal addresses

![Diagram of NAT and IP addresses]

Network Address Translation (cont’d)

- Independently assign addresses to machines behind the same NAT
 - Usually in address block 192.168.0.0/16
- Use port numbers to multiplex demultiplex internal addresses

![Diagram of NAT and IP addresses]
Network Address Translation (cont’d)

- Independently assign addresses to machines behind same NAT
 - Usually in address block 192.168.0.0/16
- Use port numbers to multiplex demultiplex internal addresses
Network Address Translation (cont’d)

- Independently assign addresses to machines behind the same NAT
 - Usually in address block 192.168.0.0/16
- Use port numbers to multiplex demultiplex internal addresses

![Diagram showing NAT configuration]

192.2.3.4

192.2.3.5

Clients

5.6.7.8

192.2.3.4

192.2.3.5

Clients

Network Address Translation (cont’d)

- Independently assign addresses to machines behind the same NAT
 - Usually in address block 192.168.0.0/16
- Use port numbers to multiplex demultiplex internal addresses

![Diagram showing NAT configuration]
Network Address Translation (cont’d)

- Independently assign addresses to machines behind same NAT
 - Usually in address block **192.168.0.0/16**
 - Use port numbers to multiplex demultiplex internal addresses
Network Address Translation (cont’d)

- Independently assign addresses to machines behind same NAT
 - Usually in address block 192.168.0.0/16
- Use port numbers to multiplex demultiplex internal addresses
Hard Policy Questions

- How much address space per geographic region?
 - Equal amount per country?
 - Proportional to the population?
 - What about addresses already allocated?
- Address space portability?
 - Keep your address block when you change providers?
 - Pro: avoid having to renumber your equipment
 - Con: reduces the effectiveness of address aggregation
- Keeping the address registries up to date?
 - What about mergers and acquisitions?
 - Delegation of address blocks to customers?
 - As a result, the registries are often out of date

Summary of IP Addressing

- 32-bit numbers identify **interfaces**
- Allocated in prefixes
- **Non-uniform hierarchy** for scalability and flexibility
 - Routing is based on **CIDR**
- A number of special-purpose blocks reserved
- Address allocation:
 - ICANN ⇒ RIR ⇒ ISP ⇒ customer network ⇒ host
- Issues to be covered later
 - How hosts get their addresses (**DHCP**)
 - How to map from an IP address to a link address (**ARP**)
Next Lecture

- IP Forwarding; Transport protocols
- Read K&R: 3-3.4 (pp 195-240)