Internet: a large number of ASes

- Large ISP
- Large ISP
- Small ISP
- Access Network
- Dial-Up ISP

Outline

- Why does BGP exist?
 - What is interdomain routing and why do we need it?
 - Why does BGP look the way it does?
- How does BGP work?
 - Path vector algorithm
 - … and many boring details

"pay more attention to the “why” than the “how”"

Routing

- Provides paths between networks
- Previous lecture presented two routing designs
 - link-state
 - distance vector
- Previous lecture assumed single domain
 - all routers have same routing metric (shortest path)
 - no privacy issues, no policy issues

Internet is more complicated.....

- Internet not just unstructured collection of networks
- Internet is comprised of a set of “autonomous systems” (ASes)
 - independently run networks, some are commercial ISPs
 - currently around 30,000 ASes
- ASes are sometimes called “domains”
 - hence “interdomain routing”

Internet: a large number of ASes

- Two types of routers
 - Border router (Edge), Internal router (Core)

Who speaks BGP?

- Two types of routers
 - Border router (Edge), Internal router (Core)
Why BGP Is the Way It Is

1. ASes are autonomous
 - Want to choose their own internal routing protocol
 - different algorithms and metrics
 - Want freedom to route based on policy
 - “my traffic can’t be carried over my competitor’s network”
 - “I don’t want to carry transit traffic through my network”
 - not expressible as Internet-wide “shortest path”!
 - Want to keep their connections and policies private
 - would reveal business relationships, network structure

Rest of lecture...

- Motivate why BGP is the way it is
- Discuss some problems with interdomain routing
- Discuss (briefly!) what a new BGP might look like
- Explain some of BGP’s details
 - not fundamental, just series of specific design decisions

I-BGP and E-BGP

I-BGP and E-BGP

Purpose of BGP

Share connectivity information across ASes

In more detail

1. Provide internal reachability (IGP)
2. Learn routes to external destinations (eBGP)
3. Distribute externally learned routes internally (iBGP)
4. Select closest egress (IGP)
2. ASes have business relationships

- Three kinds of common relationships between ASes
 - AS A can be AS B’s customer
 - AS A can be AS B’s provider
 - AS A can be AS B’s peer

- Business implications
 - customer pays provider
 - peers don’t pay each other

- Policy implications
 - “When sending traffic, I prefer to route through customers over peers, and peers over providers”
 - “I don’t carry traffic from one provider to another provider”

What routing algorithm can we use?

- Key issues are policy and privacy

- Can’t use shortest path
 - domains don’t have any shared metric
 - policy choices might not be shortest path

- Can’t use link state
 - would have to flood policy preferences and topology
 - would violate privacy

Path-Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Faster loop detection (no count-to-infinity)

- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

AS-level topology

- Destinations are IP prefixes (e.g., 12.0.0.0/8)
- Nodes are Autonomous Systems (ASes)
 - internals are hidden
- Links are connections & business relationships

What about distance vector?

- Does not reveal any connectivity information

- But is designed to compute shortest paths

- Extend distance vector to allow policy choices?

Faster Loop Detection

- Node can easily detect a loop
 - Look for its own node identifier in the path
 - E.g., node 1 sees itself in the path “3, 2, 1”

- Node can simply discard paths with loops
 - E.g., node 1 simply discards the advertisement
Flexible Policies

• Each node can apply local policies
 – Path selection: Which path to use?
 – Path export: Which paths to advertise?

• Examples
 – Node 2 may prefer the path “2, 3, 1” over “2, 1”
 – Node 1 may not let node 3 hear the path “1, 2”

Selection vs Export

• Selection policies
 – determines which paths I want my traffic to take

• Export policies
 – determines whose traffic I am willing to carry

• Notes:
 – any traffic I carry will follow the same path my traffic takes, so there is a connection between the two
 – from a protocol perspective, decisions can be arbitrary
 • can depend on entire path (advantage of PV approach)

Illustration

Route export

Route selection

Selection: controls traffic out of the network

Export: controls traffic into the network

Examples of Standard Policies

• Transit network:
 – Selection: prefer customer to peer to provider
 – Export:
 • Let customers use any of your routes
 • Let anyone route through you to your customer
 • Block everything else

• Multihomed (nontransit) network:
 – Export: Don’t export routes for other domains
 – Selection: pick primary over backup

Any Questions?

Issues with Path-Vector Policy Routing

• Reachability

• Security

• Performance

• Lack of isolation

• Policy oscillations
Reachability
- In normal routing, if graph is connected then reachability is assured
- With policy routing, this does not always hold

Performance
- BGP designed for policy not performance
- “Hot Potato” routing common but suboptimal
 - AS wants to hand off the packet as soon as possible
- Even BGP “shortest paths” are not shortest
 - Fewest AS’s != Fewest number of routers
- 20% of paths inflated by at least 5 router hops
- Not clear this is a significant problem

Lack of isolation: dynamics
- If there is a change in the path, the path must be re-advertised to every node using the path
- “Route Flap Damping” supposed to help (but ends up causing more problems)

Security
- An AS can claim to serve a prefix that they actually don’t have a route to (blackholing traffic)
 - problem not specific to policy or path vector
 - important because of AS autonomy
- Even worse: snoop on all traffic to almost any destination
 - without anyone realizing that anything is wrong
- Fixable: make ASes “prove” they have a path
 - but not used in today’s Internet

Performance (example)
- AS path length can be misleading
 - An AS may have many router-level hops

Lack of isolation: routing table size
- Each BGP router must know path to every other IP prefix
 - but router memory is expensive and thus constrained
- Number of prefixes growing more than linearly
- Subject of current research

Number of prefixes in BGP table

Fig. from [Huston]
Interdomain routing protocol for the Internet—Prefix-based path-vector protocol—Policy-based routing based on ASs

• 1989: BGP-1 [RFC 1105]
 – Replacement for EGP (1984, RFC 904)
• 1990: BGP-2 [RFC 1163]
• 1991: BGP-3 [RFC 1267]
• 1995: BGP-4 [RFC 1771]
 – Support for Classless Interdomain Routing (CIDR)

Border Gateway Protocol (BGP)

Policy Oscillations (cont’d)

• Policy autonomy vs network stability
 – focus of much recent research

• Not an easy problem
 – PSPACE-complete to decide whether given policies will eventually converge [FP2008]

• However, if policies follow normal business practices, stability is guaranteed [GR2000]

Persistent Oscillations due to Policies

Depends on the interactions of policies

We are back to where we started!

Policy Oscillations (cont’d)

Redesigning BGP

• If we keep all the current constraints, not many alternative design options (at high-level)
 – Which constraints might we lift?

• Are most policies really private?
 – could use link-state for some of the routing

• Do ASes really need to see the entire path?
 – could hide some of the path, reducing updates

• Can AS structure be integrated into addressing?

Any Questions?

• Next up: the details

BGP’s job: maintain routing table

We are back to where we started!
BGP Operations

- **Establish session on TCP port 179**
- **Exchange all active routes**
- **Exchange incremental updates**

While connection is ALIVE exchange route UPDATE messages

Incremental Protocol

- A node learns multiple paths to destination
 - Stores all of the routes in a routing table
 - Applies policy to select a single active route
 - ... and may advertise the route to its neighbors

- **Incremental updates**
 - Announcement
 - Upon selecting a new active route, add node id to path
 - ... and (optionally) advertise to neighbors
 - Withdrawal
 - If the active route is no longer available
 - ... send a withdrawal message to the neighbors

BGP Route Processing

- **Apply Import Policies**
- **Best Route Selection**
- **Install forwarding Entries for best Routes**
- **Apply Export Policies**
- **IP Forwarding Table**

Open ended programming.
Constrained only by vendor configuration language

- Apply Policy = filter routes & tweak attributes
- Based on Attribute Values
- Best Routes
- Apply Policy = filter routes & tweak attributes
- Transmit BGP Updates

Selecting the best route

- Attributes of routes set modifid according to operator instructions
- Routes compared based on attributes using (mostly) standardized rules

1. Highest local preference (all equal by default...)
2. Shortest AS path length ...so default = shortest paths)
3. Lowest origin type (IGP < EGP < incomplete)
4. Lowest MED
5. eBGP- over iBGP-learned
6. Lowest IGP cost
7. Lowest next-hop router ID

Attributes

- **Destination prefix (e.g., 128.112.0.0/16)**
- **Routes have attributes, including**
 - AS path (e.g., “7018 88”)
 - Next-hop IP address (e.g., 12.127.0.121)

ASPATH Attribute

- Prefix Originated

- **AS 1129 Global Access**
- **AS 12654**
- **AS 1755**
- **AS 1239 Sprint**
- **AS 7018 AT&T**
- **AS 128 88 Princeton**
- **AS 128.112.0.0/16**
 - AS Path = 128 88
 - Next Hop = 192.0.2.1
 - Prefix Originated
Local Preference attribute

Policy choice between different AS paths

The higher the value the more preferred

Carried by IBGP, local to the AS.

<table>
<thead>
<tr>
<th>Destination</th>
<th>AS Path</th>
<th>Local Pref</th>
</tr>
</thead>
<tbody>
<tr>
<td>140.20.1.0/24</td>
<td>AS3 AS1</td>
<td>300</td>
</tr>
<tr>
<td>140.20.1.0/24</td>
<td>AS2 AS1</td>
<td>100</td>
</tr>
</tbody>
</table>

Internal BGP and Local Preference

• Example
 – Both routers prefer the path through AS 100 on the left
 – … even though the right router learns an external path

Origin attribute

• Who originated the announcement?
• Where was a prefix injected into BGP?
• IGP, BGP or Incomplete (often used for static routes)

Multi-Exit Discriminator (MED) attr.

• When ASes interconnected via 2 or more links
• AS announcing prefix sets MED (AS2 in picture)
• AS receiving prefix uses MED to select link
• A way to specify how close a prefix is to the link it is announced on

IGP cost attribute

• Used in BGP for hot-potato routing
 – Each router selects the closest egress point
 – … based on the path cost in intradomain protocol
• Somewhat in conflict with MED

Lowest Router ID

• Last step in route selection decision process
• "Arbitrary" tiebreaking
• But we do sometimes reach this step, so how ties are broken matters
Joining BGP and IGP Information

• Border Gateway Protocol (BGP)
 – Announces reachability to external destinations
 – Maps a destination prefix to an egress point
 • 128.112.0.0/16 reached via 192.0.2.1

• Interior Gateway Protocol (IGP)
 – Used to compute paths within the AS
 – Maps an egress point to an outgoing link
 • 192.0.2.1 reached via 10.1.1.1

Some Routers Don’t Need BGP

• Customer that connects to a single upstream ISP
 – The ISP can introduce the prefixes into BGP
 – … and the customer can simply default-route to the ISP

Summary

• BGP is essential to the Internet
 – ties different organizations together

• Poses fundamental challenges….
 – leads to use of path vector approach

• …and myriad details