Wired Communication

Pros
- Very reliable
 - For Ethernet, medium HAS TO PROVIDE a Bit Error Rate (BER) of 10^{-12} (one error every one trillion bits!)
 - Insulated wires; wires placed underground and in walls
 - Error Correction Techniques
- Very high transfer rates
 - Up to 100-Gbit/s or more
- Long distance
 - Up to 40km (~25 miles) in 10-Gbit/s Ethernet (cutting edge)

Cons
- Expensive to set up infrastructure
- Infrastructure is fixed once set up
- No mobility

Wireless Communication

Pros
- Allows mobility
- Much cheaper and easier to deploy, change, and upgrade!

Cons
- Exposed (unshielded) medium
 - Susceptible to physical phenomena (interference)
 - Variable BER – Error correction may not suffice in all cases
- Slower data rates for wider distances
- OSI layered stack designed for wired medium
 - Difficult to “hide” underlying behavior
- Security: anyone in range hears transmission

Goals for Today’s Lecture

- Characteristics of Wireless Media
- 802.11 Architecture and Media Access Control Protocol
- Collision Detection vs. Collision Avoidance
 - Hidden Terminal and Exposed Terminal Problem
 - Request To Send (RTS) / Clear To Send (CTS) mechanism
- Multihop Wireless Networks
 - Sensor Networks
 - TCP over Multihop Networks
- Wireless Security

Wireless Communication Standards (Alphabet Soup)

- Cellular
 - 2G: GSM (Global System for Mobile communication), CDMA (Code division multiple access)
 - 3G: CDMA2000
- IEEE 802.11
 - A: 5.0GHz band, 54Mbps (25 Mbps operating rate)
 - B: 2.4GHz band, 11Mbps (4.5 Mbps operating rate)
 - G: 2.4GHz, 54Mbps (19 Mbps operating rate)
 - Other versions to come.
- IEEE 802.15 – lower power wireless
 - 802.15.1: 2.4Ghz, 2.1 Mbps (Bluetooth)
 - 802.15.4: 2.4Ghz, 250 Kbps (Sensor Networks)
Other Wireless Link Characteristics

- **Path loss**
 - Signal attenuation as a function of distance
 - Signal-to-noise ratio (SNR—Signal Power/Noise Power) decreases, make signal unrecoverable

- **Multipath Propagation**
 - Signal reflects off surfaces, effectively causing self-interference

- **Interference from other sources**
 - Internal Interference
 - Hosts within range of each other collide with one another’s transmission (remember Aloha)
 - External Interference
 - Microwave is turned on and blocks your signal

Path Loss

- Signal power attenuates by about $\sim r^2$ factor for omni-directional antennas in free space
 - Where r is the distance between the sender and the receiver
- The exponent in the factor is different depending on placement of antennas
 - Less than 2 for directional antennas
 - Faster Attenuation
 - Exponent greater than 2 when antennas are placed on the ground
 - Signal bounces off the ground and reduces the power of the signal

Multipath Effects

- Signals bounce off surface and interfere with one another
- What signals are out of phase?
 - Orthogonal signals cancel each other and nothing is received!

A Wireless Link?

(courtesy of Gilman Tolle and Jonathan Hui, ArchRock)

A Wireless Link!

(courtesy of Gilman Tolle and Jonathan Hui, ArchRock)

The Amoeboid “cell”

(courtesy of David Culler, UCB)
Wireless Bit Errors

- The lower the SNR (Signal/Noise) the higher the Bit Error Rate (BER)
- How can we deal with this?
 - Make the signal stronger
- Why is this not always a good idea?
 - Increased signal strength requires more power
 - Increases the interference range of the sender, so you interfere with more nodes around you
- Error Correction schemes can correct some problems

802.11 Architecture

- Designed for limited geographical area
- AP’s (Access Points) are set to specific channel and broadcast beacon messages with SSID and MAC Address periodically
- Hosts scan all the channels to discover the AP’s
 - Host associates with AP (actively or passively)

Ethernet vs 802.11

- Wireless MAC design
 - Why not just use Ethernet algorithms?
 - Ethernet: one shared “collision” domain
 - It’s technically difficult to detect collisions
 - Collisions are at receiver, not sender
 - … even if we could, it wouldn’t work
 - Different transmitters have different coverage areas
 - In addition, wireless links are much more prone to loss than wired links
 - Carrier Sense (CSMA) is OK; detection (CD) is not

Hidden Terminals

- A and C can both send to B but can’t hear each other
 - A is a hidden terminal for C and vice versa
- CSMA/CD will be ineffective – need to sense at receiver

Exposed Terminals

- Exposed node: B sends a packet to A; C hears this and decides not to send a packet to D (despite the fact that this will not cause interference)!
CSMA/CA: CSMA w/ Collision Avoidance

- Since we can’t detect collisions, we try to **avoid** them.
- When medium busy, choose random interval (contention window)
 - Wait for that many idle timeslots to pass before sending
- When a collision is inferred, retransmit with binary exponential backoff (like Ethernet)
 - Use ACK from receiver to infer “no collision”
 - Use exponential backoff to adapt contention window

Multiple Access with Collision Avoidance (MACA)

- Before every data transmission
 - Sender sends a Request to Send (RTS) frame containing the length of the transmission
 - Receiver respond with a Clear to Send (CTS) frame
 - Sender sends data
 - Receiver sends an ACK; now another sender can send data
- When sender doesn’t get a CTS back, it assumes collision

MACA, con’t

- If other nodes hear RTS, but not CTS: **send**
 - Presumably, destination for first sender is out of node’s range …

MACA, con’t

- If other nodes hear RTS, but not CTS: **send**
 - Presumably, destination for first sender is out of node’s range …
 - … Can cause problems when a CTS is **lost**
- When you hear a CTS, you keep quiet until scheduled transmission is over (hear ACK)

RTS / CTS Protocols (MACA)

1. B stimulates C with Request To Send (RTS)
2. A hears RTS and defers (to allow C to answer)
3. C replies to B with Clear To Send (CTS)
4. D hears CTS and defers to allow the data
5. B sends to C

802.11 Stack View

- CSMA/CA runs over the 802.11 physical layer
- Link-level acknowledgements for every frame sent
Link-Layer Acknowledgements

- Receiver acks every data packet
- If ACK is lost, source tries again until a maximum retransmission number is reached

Channelization of spectrum

- Typically, available frequency spectrum is split into multiple channels
- Some channels may overlap

<table>
<thead>
<tr>
<th>Channels</th>
<th>3 channels</th>
<th>8 channels</th>
<th>4 channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>26 MHz</td>
<td>100 MHz</td>
<td>200 MHz</td>
</tr>
<tr>
<td>915 MHz</td>
<td>2.45 GHz</td>
<td>5.25 GHz</td>
<td>5.8 GHz</td>
</tr>
<tr>
<td>250 MHz</td>
<td>500 MHz</td>
<td>1000 MHz</td>
<td></td>
</tr>
<tr>
<td>24.125 GHz</td>
<td>61.25 GHz</td>
<td>122.5 GHz</td>
<td></td>
</tr>
</tbody>
</table>

Preventing Collisions Altogether

- Frequency Spectrum partitioned into several channels
 - Nodes within interference range can use separate channels
- Now A can send B while C sends to D without any interference!
- Aggregate Network throughput doubles

Using Multiple Channels

- 802.11: AP’s on different channels
 - Usually manually configured by administrator
 - Automatic Configuration may cause problems
- Most cards have only 1 transceiver
 - Not Full Duplex: Cannot send and receive at the same time
- Multichannel MAC Protocols
 - Automatically have nodes negotiate channels
 - Channel coordination amongst nodes is necessary
 - Introduces negotiation and channel-switching latency that reduce throughput

Wireless Multihop Networks

- Vehicular Networks
 - Delay Tolerant (batch) sending over several hops carry data to a base station
- Common in Sensor Network for periodically transmitting data
 - Infrastructure Monitoring
 - E.g., structural health monitoring of the Golden Gate Bridge
- Multihop networking for Internet connection sharing
 - Routing traffic over several hops to base station connected to Internet
 - E.g., Meraki Networks

Large Multihop Network

(courtesy of Sanjit Biswas, MIT)
Multi-Hop Wireless Ad Hoc Networks
(Courtesy of Tianbo Kuang and Carey Williamson University of Calgary)

Multi-Hop Wireless Ad Hoc Networks
(Assume ideal world...)
Multi-Hop Wireless Ad Hoc Networks

Multi-Hop Wireless Ad Hoc Networks
Multi-Hop Wireless Ad Hoc Networks

(Reality check...)

Problem 1: node A can’t use both of these links at the same time
- shared wireless channel
- transmit or receive, but not both

Problem 2: can’t use both of these links at same time
- range overlap at A
 - “hidden node” problem
 - “exposed node” problem

Problem 3: LOTS of contention for the channel
- in steady state, all want to send
- need RTS/CTS to resolve contention

RTS: Request-To-Send
CTS: Clear-To-Send
Multi-Hop Wireless Ad Hoc Networks

Multi-Hop Wireless Ad Hoc Networks
Problem 4: TCP uses ACKS to indicate reliable data delivery.
- Bidirectional traffic (DATA, ACKs)
- Even more contention!!!
Summary

- Wireless connectivity provides a very different set of tradeoffs from wired
 - Much greater ease of deployment
 - Mobility
 - But: unprotected physical signaling
 - Complications due to interference, attenuated range
 - Leading to much more frequent loss
- Hidden terminal and Exposed terminal problems motivate need for a different style of Media Access Control: CSMA/CA
- Multihop provides applications to sensornets, citynets
 - But additional complications of routing, contention
- Wireless devices bring new security risks
- Next lecture: Quality of Service