Announcements

- No class Wednesday. Happy Thanksgiving!

- Project 2a code posted… use at will for part 2b
 - but, better and probably easier to use your own code
Motivational Example: Streaming Media

- Live 8 concert
 - Send ~300 Kb/s video streams
 - Peak usage > 100,000 simultaneous users
 - Consumes > 30 Gb/s
 - If 1000 people are in Berkeley, and if the concert were broadcast from a single location, 1000 unicast streams are sent from that location to Berkeley

This approach does not scale...
Instead build trees

Copy data at routers
At most one copy of a data packet per link

- Routers keep track of groups in real-time
- Routers compute trees and forward packets along them
- LANs implement link layer multicast by broadcasting

Multicast Routing Approaches

- Kinds of Trees
 - Source Specific Trees
 - Shared Tree

- Tree Computation Methods
 - Link state
 - Distance vector
• Each source is the root of its own tree
• One tree per source
• Tree can consist of shortest paths to each receiver

Very good performance but expensive to construct/maintain; routers need to manage a tree per source
Shared Tree

One tree used by all members in a group

Less state to construct but hard to pick “good” trees for everyone!

Shared Tree

- Ideally, find a Steiner tree - the minimum-weighted tree connecting only the multicast members
Shared Tree

- Ideally, find a Steiner tree - minimum-weighted tree connecting only the multicast members
- Finding Steiner Tree is NP hard
- Heuristics are known

Example heuristic: find a minimum-spanning tree - minimum-weighted tree connecting all nodes in the network
- Finding a minimum spanning tree is much easier
Shared Tree

- Example heuristic: find a minimum-spanning tree – minimum-weighted tree connecting all nodes in the network
- Finding a minimum spanning tree is much easier. How?

Prune back to get multicast tree
Multicast Service Model

- **Unicast:** packets delivered to one destination
- **Broadcast:** packets delivered to all end-hosts
- **Multicast:** packets delivered to multiple destinations (those that have joined the multicast group)

Receivers join a multicast group which is identified by a multicast address (e.g. G)

Sender(s) send data to address G

Network routes data to each of the receivers

Multicast Service Model (cont’d)

- Membership access control
 - Open group: anyone can join
 - Closed group: restrictions on joining

- Sender access control
 - Anyone can send to group
 - Anyone in group can send to group
 - Restrictions on which host can send to group
Multicast and Layering

- Multicast can be implemented at different layers
 - data link layer
 - e.g. Ethernet multicast
 - network layer
 - e.g. IP multicast
 - application layer
 - e.g. End system multicast
- Which layer is best?

Multicast Implementation Issues

- How are multicast packets addressed?
- How is join implemented?
- How is send implemented?
- How much state is kept and who keeps it?
Data Link Layer Multicast

- Recall: end-hosts in the same local area network (LAN) can hear from each other at the data link layer (e.g., Ethernet)
- Reserve some data link layer addresses for multicast
- Join group at multicast address G
 - Network interface card (NIC) normally only listens for packets sent to unicast address A and broadcast address B
 - To join group G, NIC also listens for packets sent to multicast address G (NIC limits number of groups joined)
 - Implemented in hardware, thus efficient
- Send to group G
 - Packet is flooded on all LAN segments, like broadcast
 - Can waste bandwidth, but LANs should not be very large
- Only host NICs keep state about who has joined → scalable to large number of receivers, groups

Problems with Data Link Layer Multicast

- Single data link technology
- Single LAN
 - Limited to small number of hosts
 - Limited to low diameter latency
 - Essentially all the limitations of LANs compared to internetworks
Network Layer (IP) Multicast

- Overcomes limitations of data link layer multicast
- Performs inter-network multicast routing
 - Relies on data link layer multicast for intra-network routing
- Portion of IP address space defined as multicast addresses
 - 2^{28} addresses for entire Internet
- Open group membership
- Anyone can send to group
 - Flexible, but leads to problems

IP Multicast Routing

- Intra-domain
 - Distance-vector multicast
 - Link-state multicast
- Inter-domain
 - Protocol Independent Multicast
 - Single Source Multicast
Distance Vector Multicast Routing Protocol (DVRMP)

- An elegant extension to DV routing
- Use shortest path DV routes to determine if link is on the source-rooted spanning tree
- Three steps in developing DVRMP
 - Reverse Path Flooding
 - Reverse Path Broadcasting
 - Truncated Reverse Path Broadcasting

Reverse Path Flooding (RPF)

- Extension to DV unicast routing
- Packet forwarding
 - If incoming link is shortest path to source
 - Send on all links except incoming
 - Packets always take shortest path
 - assuming delay is symmetric
- Issues
 - Some links (LANs) may receive multiple copies
 - Every link receives each multicast packet, even if no interested hosts

↔ DV shortest paths
← RPF data flow
Example

- Flooding can cause a given packet to be sent multiple times over the same link

![Diagram of a network with nodes S, x, y, and z, showing a duplicate packet and reverse path broadcasting]

- Solution: Reverse Path Broadcasting

Reverse Path Broadcasting (RPB)

- Chose parent of each link along reverse shortest path to source
- Only parent forward to a link (child link)
- Identify Child Links
 - Routing updates identify parent
 - Since distances are known, each router can easily figure out if it's the parent for a given link
 - In case of tie, lower address wins

![Diagram of Reverse Path Broadcasting example with nodes S, x, y, and z, showing forward only to child link and child link of x for S]
Don’t Really Want to Flood!

- This is still a broadcast algorithm – the traffic goes everywhere
- Need to “Prune” the tree when there are subtrees with no group members
- Solution: Truncated Reverse Path Broadcasting

Truncated Reverse Path Broadcasting (TRPB)

- Extend DV/RPB to eliminate unneeded forwarding
- Identify leaves
 - Routers announce that a link is their next link to source S
 - Parent router can determine that it is not a leaf
- Explicit group joining on LAN
 - Members periodically (with random offset) multicast report locally
 - Hear and report, then suppress own
- Packet forwarding
 - If not a leaf router or have members
 - Out all links except incoming

L – leaf node
NL – Non-leaf node
Pruning Details

- Prune (Source,Group) at leaf if no members
 - Send Non-Membership Report (NMR) up tree
- If all children of router R send NRM, prune (S,G)
 - Propagate prune for (S,G) to parent R
- On timeout:
 - Prune dropped
 - Flow is reinstated
 - Down stream routers re-prune
- Note: a soft-state approach

Pruning Details

- How to pick prune timers?
 - Too long \(\rightarrow\) large join time
 - Too short \(\rightarrow\) high control overhead
- What do you do when a member of a group (re)joins?
 - Issue prune-cancellation message (graft)
Distance Vector Multicast Scaling

- State requirements:
 - \(O(\text{Sources} \times \text{Groups})\) active state
- How to get better scaling?
 - Hierarchical Multicast
 - Core-based Trees

Core Based Trees (CBT)

- Pick a “rendezvous point” for the group called the core.
 - One tree per group (same tree for all senders in group)
- Unicast packet to core and bounce it back to multicast group
- Tree construction is receiver-based
 - Joins can be tunneled if required
 - Only nodes on tree involved
- Reduce routing table state from \(O(S \times G)\) to \(O(G)\)
Example

- Group members: M1, M2, M3
- M1 sends data

CBT vs. DV Multicast

- **DV Multicast**: One tree for each source
 - More state in routers
 - Better optimized trees

- **CBT**: Trees shared among all sources in a group
 - Less state in routers
 - Shared tree may not be the best tree for any particular source
 - Need to pick a good core node
 - Sub-optimal setup delay
 - Optimal choice (computing topological center) is NP hard
Problems with Network Layer Multicast (NLM)

- Scales poorly with number of groups
 - A router must maintain state for every group that traverses it
 - Many groups traverse core routers
- Supporting higher level functionality is difficult
 - NLM: best-effort multi-point delivery service
 - Reliability and congestion control for NLM complicated
- Deployment is difficult and slow
 - ISPs reluctant to turn on NLM

NLM Reliability

- Assume reliability through retransmission
- Sender can not keep state about each receiver
 - E.g., what receivers have received
 - Number of receivers unknown and possibly very large
- Sender can not retransmit every lost packet
 - Even if only one receiver misses packet, sender must retransmit, lowering throughput
- N(ACK) implosion
 - Described next
(N)ACK Implosion

- (Positive) acknowledgements
 - Ack every n received packets
 - What happens for multicast?
- Negative acknowledgements
 - Only ack when data is lost
 - Assume packet 2 is lost

NACK Implosion

- When a packet is lost all receivers in the sub-tree originated at the link where the packet is lost send NACKs
Barriers to Multicast

- Hard to change IP
 - Multicast means changes to IP
 - Details of multicast were very hard to get right

- Not always consistent with ISP economic model
 - Charging done at edge, but single packet from edge
 can explode into millions of packets within network

- Troublesome security model
 - Anyone can send to a group
 - Denial-of-service attacks on known groups

Overlay Networks
Overlay Networks: Motivations

- Protocol changes in the network happen very slowly

- Why?
 - Internet network is a shared infrastructure; need to achieve consensus (IETF)
 - Many of proposals require to change a large number of routers (e.g., IP Multicast, QoS); otherwise end-users won’t benefit

- Proposed changes that haven’t happened yet on large scale:
 - More Addresses (IPv6 ’91)
 - Security (IPSEC ’93); Multicast (IP multicast ’90)

Motivations (cont’d)

- One size does not fit all

- Applications need different levels of
 - Reliability
 - Performance (latency)
 - Security
 - Access control (e.g., who is allowed to join a multicast group)
 - …
Goals

- Make it easy to deploy new functionalities in the network → accelerate the pace of innovation
- Allow users to customize their service

Solution

- Deploy processing in the network
- Have packets processed as they traverse the network
Overlay network overview

- Application Layer (Overlay) multicast
- Resilient Overlay Network (RON)
- Next lecture: Peer-to-peer systems

Application Layer Multicast (ALM)

- Let the hosts do all the “special” work
 - Only require unicast from infrastructure

- Basic idea:
 - Hosts do the copying of packets
 - Set up tree between hosts

- Example: Narada [Yang-hua et al, 2000]
 - Small group sizes <= hundreds of nodes
 - Typical application: streaming video

(What do you use that’s a lot like overlay multicast?)
Algorithmic Challenge

- Choosing replication/forwarding points among hosts
 - how do the hosts know about each other
 - and know which hosts should forward to other hosts
Advantages of ALM

- No need for changes to IP or routers
- No need for ISP cooperation
- End hosts can prevent other hosts from sending
- Easy to implement reliability
 - use hop-by-hop retransmissions

Performance Concerns

- Stretch
 - ratio of latency in the overlay to latency in the underlying network
- Stress
 - number of duplicate packets sent over the same physical link
- Network Layer Multicast can get perfect or near-perfect stretch; ALM can’t in general
 - but it can come pretty close
Performance Concerns

Overlay network overview

- Overlay Multicast (Narada)
 - Resilient Overlay Network (RON)
- Next lecture: Peer-to-peer systems
Resilient Overlay Network (RON)

- Premise: by building application overlay network, can increase performance and reliability of routing

- Install \(N \) computers at different Internet locations

- Each computer acts as an overlay network router
 - Between each overlay router is an IP tunnel (logical link)
 - Logical overlay topology is all-to-all (\(N^2 \) total links)

- Run a link-state routing algorithm in that overlay topology
 - Computers actively measure each logical link in real time for packet loss rate, latency, throughput, etc
 - These define link costs
 - Route overlay network traffic based on measured characteristics

Example

Berkeley

Default IP path determined by BGP & OSPF

UCLA

MIT

Reroute traffic using red alternative overlay network path, avoid congestion point

Acts as overlay router
Summary: What You Need to Know

- Multicast protocols
 - DVRMP
 - CBT
 - How they compare
- Overlay networks
 - Benefits and drawbacks
 - More to come: P2P