

EE 122: Network Security I

Ion Stoica (and Brighten Godfrey)
TAs: Lucian Popa, David Zats and Ganesh Ananthanarayanan
http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

Cryptographic Algorithms

- Security foundation: cryptographic algorithms
- Secret key cryptography, Data Encryption Standard (DES)
- Public key cryptography, RSA algorithm
- Message digest, MD5

Security Requirements

- Authentication
- Ensures that the sender and the receiver are who they are claiming to be
- Data integrity
- Ensure that data is not changed from source to destination
- Confidentiality
- Ensures that data is read only by authorized users
- Non-repudiation
- Ensures that the sender has strong evidence that the receiver has received the message, and the receiver has strong evidence of the sender identity, strong enough such that the sender cannot deny that it has sent the message and the receiver cannot deny that it has received the message

Symmetric Key

- Both the sender and the receiver use the same secret keys

Outline

> Cryptographic Algorithms (Confidentiality and Integrity)

- Authentication
- System examples

Data Encryption Standard (DES)

- DES encrypts a 64-bit block of plain text using a 64-bit key
- Three phases

1. Permute the 64 bits in the block
2. Apply a given operation 16 times on the 64 bits
3. Permute the 64 bits using the inverse of the original permutation

Initial Permutation (IP)

- IP: bit 58 of input becomes $1^{\text {st }}$ bit, bit 50 becomes $2^{\text {nd }}$ bit, etc

585042342618102605244362820124
625446383022146645648403224168
$574941332517 \quad 91595143352719113$
615345372921135635547393123157

- IP ${ }^{-1}$: inverse of $I P$, e.g., $I P(1)=58, \mathrm{IP}^{-1}(58)=1$

408481656246432397471555236331
386461454226230375451353216129
364441252206028353431151195927
34242105018582633141949175725

DES Properties

- Confidentiality
- No mathematical proof, but practical evidence suggests that decrypting a message without knowing the key requires exhaustive search
- To increase security use triple-DES, i.e., encrypt the message three times

$2^{\text {nd }}$ Phase: Operation In Each Round

- Key K is 64 bits
- 16 rounds
- Each round i select a 48 bit key K_{i} from the original 64 bit key K. Perform (F is a given function):
$L_{i}=R_{i-1}$
$R_{i}=L_{i-1} \oplus F\left(R_{i-1}, K_{i}\right)$

Public-Key Cryptography: RSA

(Rivest, Shamir, and Adleman)

- Sender uses a public key
- Advertised to everyone
- Receiver uses a private key

Encrypting Larger Messages

- Initialization Vector (IV) is a random number generated by sender and sent together with the ciphertext

Generating Public and Private Keys

- Choose two large prime numbers p and q (~ 256 bit long) and multiply them: $n=p^{*} q$
- Chose encryption key e such that e and $(p-l)^{*}(q-l)$ are relatively prime
- Compute decryption key d as $d=e^{-1} \bmod \left((p-1)^{*}(q-1)\right)$
(equivalent to $\left.d^{*} e=1 \bmod \left((p-l)^{*}(q-1)\right)\right)$
- Public key consist of pair (n, e)
- Private key consists of pair (d, n)

RSA Encryption and Decryption

- Encryption of message block m :
- $c=m^{e} \bmod n$
- Decryption of ciphertext c :
- $m=c^{d} \bmod n$

Properties

- Confidentiality
- A receiver A computes n, e, d, and sends out (n, e)
- Everyone who wants to send a message to A uses (n, e) to encrypt it
- How difficult is to recover d ? (Someone that can do this can decrypt any message sent to A !)
- Recall that $d=e^{-1} \bmod \left((p-1)^{*}(q-1)\right)$
- So to find d, you need to find primes factors p and q - This is provable hard

Example (1/2)

- Choose $\mathrm{p}=7$ and $\mathrm{q}=11 \rightarrow \mathrm{n}=\mathrm{p}^{*} \mathrm{q}=77$
- Compute encryption key e: $(p-1)^{*}(q-1)=6 * 10=$ $60 \rightarrow$ chose $e=13$ (13 and 60 are relatively prime numbers)
- Compute decryption key d such that $13^{*} d=1$ $\bmod 60 \rightarrow d=37(37 * 13=481)$

Message Digest (MD) 5

- Provide data integrity: make sure that message was not altered by a $3^{\text {rd }}$ party
- Idea:

1) Sender computes a digest of message m, i.e., compute $\mathrm{H}(\mathrm{m})$, where H() is a publicly known hash function
2) Send digest $(d=H(m))$ to the receiver in a secure way, e.g.,

- Using another physical channel
- Using encryption

Example (2/2)

- $n=77 ; e=13 ; d=37$
- Send message block $\mathrm{m}=7$
- Encryption: $\mathrm{c}=\mathrm{m}^{\mathrm{e}} \bmod \mathrm{n}=7^{13} \bmod 77=35$
- Decryption: $\mathrm{m}=\mathrm{c}^{\mathrm{d}} \bmod \mathrm{n}=35^{37} \bmod 77=7$

MD 5 (cont'd)

- Basic property: digest operation (i.e., H()) very hard to invert
- In practice someone cannot alter the message without

Message Digest Operation

- Transformation contains complex operations (see textbook)

Simple Three-Way Handshaking

- Client and server share two secret keys: CHK and SHK, respectively
- K - session key used for data communication
- reduce \# of messages containing CHK and SHK
- x, y : nonce (random) values
- Avoid reply attacks, e.g., attacker impersonating the server
- Notation: E(m,k) - encrypt
message m with key k

Outline

- Cryptographic Algorithms (Confidentiality and Integrity)
> Authentication
- System examples

Trusted Third Party

- Trust a third party entity, authentication server
- Scenario: A wants to communicate with B
- Assumption: both A and B share secrete keys with S : K_{A} and K_{B}
- Notations:
- T: timestamp (also serves the purpose of a random number)
- L: lifetime of the session
- K: session's key

Authentication

- Goal: Make sure that the sender an receiver are the ones they claim to be
- Two solutions based on secret key cryptography (e.g., DES)
- Three-way handshaking
- Trusted third party
- One solution based on public key cryptography (e.g., RSA)
- Public key authentication

Trusted Third Party (cont'd)

Public Key Authentication

- Based on public key cryptography
- Each side need only to know the other side's public key
- No secrete key need to be shared
- A encrypts a random number x and B proves that it knows x
- A can authenticate itself to be in the same way

PKI Properties

- Authentication \rightarrow via Digital Certificates
- Confidentiality \rightarrow via Encryption
- Integrity \rightarrow via Digital Signatures
- Non-Repudiation \rightarrow via Digital Signatures

Outline

- Cryptographic Algorithms (Confidentiality and Integrity)
- Authentication
> System examples
Components of a PKI

Digital Certificate

- Signed data structure that binds an entity with its corresponding public key
- Signed by a recognized and trusted authority, i.e., Certification Authority (CA)
- Provide assurance that a particular public key belongs to a specific entity
- Example: certificate of entity $\mathrm{E}=\mathrm{E}\left(\left(\right.\right.$ name $\left._{\mathrm{E}}, \mathrm{KE}_{\text {public }}\right)$, $\mathrm{KCA}_{\text {private }}$)
- $\mathrm{KCA}_{\text {private }}$: private key of Certificate Authority
- $K E_{\text {public: }}$: public key of entity E
- name ${ }_{\mathrm{E}}$: name of entity E

Certification Authority

- People, processes responsible for creation, delivery and management of digital certificates
- Organized in an hierarchy

Root CA

Example

- Alice generates her own key pair.

- Bob generates his own key pair.

- Both sent their public key to a CA and receive a digital certificate

Registration Authority

- People, processes and/or tools that are responsible for
- Authenticating the identity of new entities (users or computing devices), e.g.,
- By phone, physical presence, etc
- Requiring certificates from CA's.

Example

- Alice gets Bob's public key from the CA

- Bob gets Alice's public key from the CA

Certificate Repository

- A database which is accessible to all users of a PKI, contains:
- Digital certificates,
- Certificate revocation information
- Policy information

Example

- Alice use private key to sign: use public key cryptography to provide integrity

Certificate Revocation

- Process of publicly announcing that a certificate has been revoked and should no longer be used.
- Approaches:
- Use certificates that automatically time out
- Use certificate revocation list
- Use list that itemizes all revoked certificates in an online directory

What do You Need To Know

- Security requirements
- Cryptographic algorithms
- How does DES and RSA work
- Authentication algorithms
- Public key management, digital certificates (high level)

