EE 122: Networks Performance & Modeling

Ion Stoica
TAs: Junda Liu, DK Moon, David Zats

http://inst.eecs.berkeley.edu/~ee122/fa09
(Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

Outline
- Motivations
- Timing diagrams
- Metrics
- Little's Theorem
- Evaluation techniques

Motivations
- Understanding network behavior
- Improving protocols
- Verifying correctness of implementation
- Detecting faults
- Monitor service level agreements
- Choosing providers
- Billing

Timing Diagrams
- Sending one packet
- Queueing
- Switching
 - Store and forward
 - Cut-through

Definitions
- Link bandwidth (capacity): maximum rate (in bps) at which the sender can send data along the link
- Propagation delay: time it takes the signal to travel from source to destination
- Packet transmission time: time it takes the sender to transmit all bits of the packet
- Queuing delay: time the packet need to wait before being transmitted because the queue was not empty when it arrived
- Processing Time: time it takes a router/switch to process the packet header, manage memory, etc
Sending One Packet

- **Bandwidth**: \(R \) bits per second (bps)
- **Propagation delay**: \(T \) sec

Transmission time = \(\frac{P}{R} \)

Propagation delay = \(T = \frac{\text{Length}}{\text{speed}} \)

- In free space: \(1 \text{m/speed} = 3.3 \text{usec} \)
- In copper: \(4 \text{usec} \)
- In fiber: \(5 \text{usec} \)

Sending one Packet: Examples

- **Example 1**
 - \(P = 1 \text{Kbyte} \)
 - \(R = 1 \text{Gbps} \)
 - \(100 \text{Km, fiber} \Rightarrow T = 500 \text{usec} \)
 - \(\frac{P}{R} = 8 \text{usec} \)

- **Example 2**
 - \(P = 1 \text{Kbyte} \)
 - \(R = 100 \text{Mbps} \)
 - \(1 \text{Km, fiber} \Rightarrow T = 5 \text{usec} \)
 - \(\frac{P}{R} = 80 \text{usec} \)

Queueing

- The queue has \(Q \) bits when packet arrives \(\Rightarrow \) packet has to wait for the queue to drain before being transmitted

Queueing delay = \(\frac{Q}{R} \)

Queueing Example

- \(P = 1 \text{Kbit}; R = 1 \text{Mbps} \Rightarrow \frac{P}{R} = 1 \text{ms} \)

Packet arrival

- Time (ms)
 - 0
 - 0.5
 - 1

Delay for packet that arrives at time \(t \):

\[d(t) = \frac{Q(t)}{R} + \frac{P}{R} \]

- Packet 1: \(d(0) = 1 \text{ms} \)
- Packet 2: \(d(0.5) = 1.5 \text{ms} \)
- Packet 3: \(d(1) = 2 \text{ms} \)

Switching: Store and Forward

- A packet is **stored** (enqueued) before being **forwarded** (sent)

Store and Forward: Multiple Packet Example

Sender

- 10 Mbps
- 5 Mbps
- 100 Mbps
- 10 Mbps

Receiver
Switching: Cut-Through
A packet starts being forwarded (sent) as soon as its header is received.

Outline
- Motivations
- Timing diagrams
 - Metrics
 - Throughput
 - Delay
- Little's Theorem
- Evaluation techniques

Throughput
- Throughput of a connection or link = total number of bits successfully transmitted during some period \([t, t + T]\) divided by \(T\)
- Link utilization = (throughput of the link)/(link rate)
- Bit rate units: 1Kbps = \(10^3\) bps, 1Mbps = \(10^6\) bps, 1Gbps = \(10^9\) bps [For memory: 1 Kbyte = \(2^{10}\) bytes = 1024 bytes]
 - Some rates are expressed in packets per second (pps) → relevant for routers/switches where the bottleneck is the header processing

Example: Windows Based Flow Control
- Connection:
 - Send \(W\) bits (window size)
 - Wait for ACKs
 - Repeat
- Assume the round-trip-time is \(RTT\) seconds
- Throughput = \(W/RTT\) bps
- Numerical example:
 - \(W = 64\) Kbytes
 - \(RTT = 200\) ms
 - Throughput = \(W/RTT = 64,000/0.2 = 2.6\) Mbps

Throughput: Fluctuations
- Throughput may vary over time

Delay Related Metrics
- Delay (Latency) of bit (packet, file) from A to B
 - The time required for bit (packet, file) to go from A to B
- Jitter
 - Variability in delay
- Round-Trip Time (RTT)
 - Two-way delay from sender to receiver and back
- Bandwidth-Delay product
 - Product of bandwidth and delay → "storage" capacity of network
Outline
- Motivations
- Timing diagrams
- Metrics
 - Little's Theorem
- Evaluation techniques

Little's Theorem
- Assume a system at which packets arrive at rate λ
- Let d be mean delay of packet, i.e., mean time a packet spends in the system
- Q: What is the mean (average) number of packets in the system (N)?

$$\lambda = \text{mean arrival rate}$$

$$d = \text{mean delay}$$

$$N = \lambda \times d$$

Example
- $\lambda = 1$
- $d = 5$

Little's Theorem: Proof Sketch
- What is the system occupancy, i.e., average number of packets in transit between 1 and 2?

Little's Theorem: Proof Sketch
- Average occupancy $= S/T$
Little's Theorem: Proof Sketch

Latest bit seen by time t

- $d(i)$ = delay of packet i
- $x(t)$ = number of packets in transit (in the system) at time t

$P = \text{packet size}$

$S = \sum S(i) = P \sum d(i)$

$T = \text{time}$

Average occupancy = (average arrival rate) x (average delay)

Outline

- Motivations
- Timing diagrams
- Metrics
- Little’s Theorem
 - Evaluation techniques

Evaluation Techniques

- Measurements
 - gather data from a real network
 - e.g., ping www.berkeley.edu
 - realistic, specific
- Simulations: run a program that pretends to be a real network
 - e.g., NS network simulator, Nachos OS simulator
- Models, analysis
 - write some equations from which we can derive conclusions
 - general, may not be realistic
- Usually use combination of methods

Simulation

- Model of traffic
- Model of routers, links
- Simulation:
 - Time driven:
 - $X(t) = \text{state at time } t$
 - $X(t+1) = f(X(t), \text{event at time } t)$
 - Event driven:
 - $E(n) = n$-th event
 - $Y(n) = \text{state after event } n$
 - $T(n) = \text{time when event } n \text{ occurs}$
- Output analysis: estimates, confidence intervals
Simulation Example

- Use trivial time-driven simulation to illustrate statistical multiplexing
- Probabilistically generate the bandwidth of a flow, e.g.,
 - With probability 0.2, bandwidth is 6
 - With probability 0.8, bandwidth is 1
- Average bandwidth, $\text{avg} = 0.2 \times 6 + 0.8 \times 1 = 2$
- $\text{peak/avg} = 6/2 = 3$

One Flow

- $\text{peak} = 6$
- $\text{avg} = 2$
- $\text{peak/avg} = 6/2 = 3$

Two Flows

- $\text{agg_peak} = 7$
- $\text{agg_avg} = 3.75$
- $\text{agg_peak/agg_avg} = 7/3.75 = 1.86$
- $\text{agg_avg} = \text{average of aggregate bandwidth}$
- $\text{agg_peak} = \text{maximum value of aggregate bandwidth}$

50 Flows

- $\text{agg_peak} = 135$
- $\text{agg_avg} = 105.25$
- $\text{agg_peak/agg_avg} = 135/105.25 = 1.28$

Statistical Multiplexing

- As number of flows increases, agg_peak/agg_avg decreases
 - For 1000 flows, $\text{peak/avg} = 2125/2009 = 1.057$
- Q: What does this mean?
- A: Multiplexing a large enough number of flows "eliminates" burstiness
 - Use average bandwidth to provision capacity, instead of peak bandwidth
 - E.g., For 1000 flows
 - Average of aggregate bandwidth = 2,000
 - Sum of bandwidth peaks = 6,000

Evaluation: Putting Everything Together

- Usually favor plausibility, tractability over realism
 - Better to have a few realistic conclusions than none (could not derive) or many conclusions that no one believes (not plausible)
Next Lecture

- Architecture, Layering, and the “End-to-End Principle”
- Read 1.4 & 1.5 of Kurose/Ross
- Pick up class computer account forms, if you haven’t done it already

- Project 1 (tiny world or warcrafts) out today
 - First part (client) due Oct 7 @ 11:59:59pm
 - Second part (server) due Oct 26 @ 11:59:59pm