

EE 122: Networks Performance \& Modeling

Ion Stoica
TAs: Junda Liu, DK Moon, David Zats
http://inst.eecs.berkeley.edu/~ee122/fa09
(Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

Motivations

- Understanding network behavior
- Improving protocols
- Verifying correctness of implementation
- Detecting faults
- Monitor service level agreements
- Choosing providers
- Billing

Outline

- Motivations
- Timing diagrams
- Metrics
- Little's Theorem
- Evaluation techniques

Outline

- Motivations
> Timing diagrams
- Metrics
- Little's theorem
- Evaluation techniques

Timing Diagrams

- Sending one packet
- Queueing
- Switching
- Store and forward
- Cut-through

Definitions

- Link bandwidth (capacity): maximum rate (in bps) at which the sender can send data along the link
- Propagation delay: time it takes the signal to travel from source to destination
- Packet transmission time: time it takes the sender to transmit all bits of the packet
- Queuing delay: time the packet need to wait before being transmitted because the queue was not empty when it arrived
- Processing Time: time it takes a router/switch to process the packet header, manage memory, etc

Queueing

- The queue has Q bits when packet arrives \rightarrow packet has to wait for the queue to drain before being transmitted

Switching: Store and Forward

- A packet is stored (enqueued) before being forwarded (sent)

Queueing Example

Store and Forward: Multiple Packet Example

a

Throughput

- Throughput of a connection or link = total number of bits successfully transmitted during some period $[t, t+T$) divided by T
- Link utilization = (throughput of the link)/(link rate)
- Bit rate units: $1 \mathrm{Kbps}=10^{3} \mathrm{bps}, 1 \mathrm{Mbps}=10^{6} \mathrm{bps}, 1$ Gbps $=10^{9}$ bps [For memory: 1 Kbyte $=2^{10}$ bytes $=$ 1024 bytes]
- Some rates are expressed in packets per second (pps) \rightarrow relevant for routers/switches where the bottleneck is the header processing

Outline

- Motivations
- Timing diagrams
> Metrics
- Throughput
- Delay
- Little's Theorem
- Evaluation techniques

Example: Windows Based Flow Control

- Connection:
- Send W bits (window size)
- Wait for ACKs
- Repeat
- Assume the round-trip-time is RTT seconds
- Throughput $=$ W/RTT bps
- Numerical example:
- $W=64$ Kbytes
- $\mathrm{RTT}=200 \mathrm{~ms}$
- Throughput $=\mathrm{W} / \mathrm{RTT}=$ $64,000 * 8 / 0.2 \mathrm{~s}=2.6 \mathrm{Mbps}$

Throughput: Fluctuations

- Throughput may vary over time

Delay Related Metrics

- Delay (Latency) of bit (packet, file) from A to B - The time required for bit (packet, file) to go from A to B
- Jitter
- Variability in delay
- Round-Trip Time (RTT)
- Two-way delay from sender to receiver and back
- Bandwidth-Delay product
- Product of bandwidth and delay \rightarrow "storage" capacity of network

Outline

- Motivations
- Timing diagrams
- Metrics
> Little's Theorem
- Evaluation techniques

Little's Theorem

- Assume a system at which packets arrive at rate λ
- Let d be mean delay of packet, i.e., mean time a packet spends in the system
- Q: What is the mean (average) number of packets in the system (N) ?

Example

- $\lambda=1$

Outline

- Motivations
- Timing diagrams
- Metrics
- Little's Theorem
> Evaluation techniques

Little's Theorem: Proof Sketch

Evaluation Techniques

- Measurements
- gather data from a real network
- e.g., ping www.berkeley.edu
- realistic, specific
- Simulations: run a program that pretends to be a real network
- e.g., NS network simulator, Nachos OS simulator
- Models, analysis
- write some equations from which we can derive conclusions
- general, may not be realistic
- Usually use combination of methods

Simulation

- Model of traffic
- Model of routers, links
- Simulation:
- Time driven:
$X(t)=$ state at time t
$X(t+1)=f(X(t)$, event at time $t)$
- Event driven:
$E(n)=n$-th event
$Y(n)=$ state after event n
$\mathrm{T}(\mathrm{n})=$ time when even n occurs
$[Y(n+1), T(n+1)]=g(Y(n), T(n), E(n))$
- Output analysis: estimates, confidence intervals

Simulation Example

- Use trivial time-driven simulation to illustrate statistical multiplexing
- Probabilistically generate the bandwidth of a flow, e.g.,
- With probability 0.2 , bandwidth is 6
- With probability 0.8 , bandwidth is 1
- Average bandwidth, avg=0.2*6 + 0.8*1 = 2
- peak/avg $=6 / 2=3$

Two Flows

agg_peak $/$ agg_avg $=7 / 3.75=1.86$
(agg_avg = average of aggregate bandwidth)
agg_peak=maximum value of aggregate bandwidth)

agg_peak $/$ agg_avg $=7 / 3.75=135 / 105.25=1.28$

Evaluation: Putting Everything Together

- Usually favor plausibility, tractability over realism - Better to have a few realistic conclusions than none (could not derive) or many conclusions that no one believes (not plausible)

50 Flows

34

As number of flows increases, agg_peak/ agg_avg decreases

- For 1000 flows, peak/avg = 2125/2009=1.057
- Q: What does this mean?
- A: Multiplexing a large enough number of flows "eliminates" burstiness
- Use average bandwidth to provision capacity, instead of peak bandwidth
E.g., For 1000 flows
- Average of aggregate bandwidth $=2,000$
- Sum of bandwidth peaks $=6,000$

One Flow

Statistical Multiplexing

Next Lecture

- Architecture, Layering, and the "End-to-End Principle"
- Read 1.4 \& 1.5 of Kurose/Ross
- Pick up class computer account forms, if you haven't done it already
- Project 1 (tiny world or warcrafts) out today
- First part (client) due Oct 7 @ 11:59:59pm
- Second part (server) due Oct 26 @ 11:59:59pm

