What is Routing?

Routing implements the core function of a network:

It ensures that information accepted for transfer at a source node is delivered to the correct set of destination nodes, at reasonable levels of performance.

Internet Routing

- Internet organized as a two level hierarchy
- First level – autonomous systems (AS’s)
 - AS – region of network under a single administrative domain
 - AS’s run an intra-domain routing protocols
 - Distance Vector, e.g., Routing Information Protocol (RIP)
 - Link State, e.g., Open Shortest Path First (OSPF)
 - Between AS’s runs inter-domain routing protocols, e.g., Border Gateway Routing (BGP)
 - De facto standard today, BGP-4

Example
Forwarding vs. Routing

- **Forwarding:** “data plane”
 - Directing a data packet to an outgoing link
 - Individual router using a forwarding table
- **Routing:** “control plane”
 - Computing paths the packets will follow
 - Routers talking amongst themselves
 - Individual router creating a forwarding table

Routing requires knowledge of the network structure
- Centralized global state
 - Single entity knows the complete network structure
 - Can calculate all routes centrally
 - Problems with this approach?
- Distributed global state
 - Every router knows the complete network structure
 - Independently calculates routes
 - Problems with this approach?
- Distributed no-global state
 - Every router knows only about its neighboring routers
 - Independently calculates routes
 - Problems with this approach?

Know Thy Network

- Link State Routing
 - E.g. Algorithm: Dijkstra
 - E.g. Protocol: OSPF
- Distance Vector Routing
 - E.g. Algorithm: Bellman-Ford
 - E.g. Protocol: RIP

Modeling a Network

- Modeled as a graph
 - Routers ⇒ nodes
 - Link ⇒ edges
 - Possible edge costs
 - delay
 - congestion level
- Goal of Routing
 - Determine a “good” path through the network from source to destination
 - Good usually means the shortest path

Link State: Control Traffic

- Each node floods its local information to every other node in the network
- Each node ends up knowing the entire network topology → use Dijkstra to compute the shortest path to every other node
Dijsktra’s Algorithm

1 Initialization:
2 S = \{A\};
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = \infty;
7
8 Loop
9 find w not in S such that D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 if D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Notation

- \(c(i,j)\): link cost from node \(i\) to \(j\); cost infinite if not direct neighbors; \(\geq 0\)
- \(D(v)\): current value of cost of path from source to destination \(v\)
- \(p(v)\): predecessor node along path from source to \(v\), that is next to \(v\)
- \(S\): set of nodes whose least cost path definitively known

Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>\infty</td>
<td>\infty</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>\infty</td>
<td>\infty</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>\infty</td>
<td>\infty</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>\infty</td>
<td>\infty</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>\infty</td>
<td>\infty</td>
</tr>
</tbody>
</table>

Example: Dijkstra’s Algorithm

1 Initialization:
2 S = \{A\};
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = \infty;
7
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>AD</td>
<td></td>
<td>4,D</td>
<td>2,D</td>
<td></td>
</tr>
</tbody>
</table>

Loop
8. find w not in S s.t. D(w) is a minimum;
9. add w to S;
10. update D(v) for all v adjacent to w and not in S;
12. if D(w) + c(w,v) < D(v) then
13. D(v) = D(w) + c(w,v); p(v) = w;
14. until all nodes in S;

Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>AD</td>
<td></td>
<td>4,D</td>
<td>2,D</td>
<td></td>
</tr>
</tbody>
</table>

Loop
8. find w not in S s.t. D(w) is a minimum;
9. add w to S;
10. update D(v) for all v adjacent to w and not in S;
12. if D(w) + c(w,v) < D(v) then
13. D(v) = D(w) + c(w,v); p(v) = w;
14. until all nodes in S;
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td></td>
<td>4,E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loop

9. find w not in S s.t. D(w) is a minimum;
10. add w to S;
11. update D(v) for all v adjacent to w and not in S;
12. if D(w) + c(w,v) < D(v) then
13. D(v) = D(w) + c(w,v); p(v) = w;
14. until all nodes in S;

To determine path A → C (say), work backward from C via p(v)
The Forwarding Table

- Running Dijkstra at node A gives the shortest path from A to all destinations
- We then construct the forwarding table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>(A,B)</td>
</tr>
<tr>
<td>C</td>
<td>(A,D)</td>
</tr>
<tr>
<td>D</td>
<td>(A,D)</td>
</tr>
<tr>
<td>E</td>
<td>(A,D)</td>
</tr>
<tr>
<td>F</td>
<td>(A,D)</td>
</tr>
</tbody>
</table>

Complexity

- How much processing does running the Dijkstra algorithm take?
- Assume a network consisting of N nodes
 - Each iteration: need to check all nodes, w, not in S
 - \(N(N+1)/2 \) comparisons: \(O(N^2) \)
 - More efficient implementations possible: \(O(N \log(N)) \)

Obtaining Global State

- Flooding
 - Each router sends link-state information out its links
 - The next node sends it out through all of its links
 - except the one where the information arrived
 - Note: need to remember previous msgs & suppress duplicates!

Flooding the Link State

- Reliable flooding
 - Ensure all nodes receive link-state information
 - Ensure all nodes use the latest version
- Challenges
 - Packet loss
 - Out-of-order arrival
- Solutions
 - Acknowledgments and retransmissions
 - Sequence numbers
 - Time-to-live for each packet
When to Initiate Flooding

- Topology change
 - Link or node failure
 - Link or node recovery
- Configuration change
 - Link cost change
 - See next slide for hazards of dynamic link costs based on current load
- Periodically
 - Refresh the link-state information
 - Typically (say) 30 minutes
 - Corrects for possible corruption of the data

Oscillations

- Assume link cost = amount of carried traffic

Distance Vector Routing

- Each router knows the links to its immediate neighbors
 - Does not flood this information to the whole network
- Each router has some idea about the shortest path to each destination
 - E.g.: Router A: “I can get to router B with cost 11 via next hop router D”
- Routers exchange this information with their neighboring routers
 - Again, no flooding the whole network
- Routers update their idea of the best path using info from neighbors

5 Minute Break

Questions Before We Proceed?
Information Flow in Distance Vector

Bellman-Ford Algorithm

- **INPUT:**
 - Link costs to each neighbor
 - *Not* full topology
- **OUTPUT:**
 - Next hop to each destination and the corresponding cost
 - Does *not* give the complete path to the destination

Bellman-Ford - Overview

- Each router maintains a table
 - Row for each possible destination
 - Column for each directly-attached neighbor to node
 - Entry in row Y and column Z of node X ⇒ best known distance from X to Y, via Z as next hop = $D_Z(X,Y)$

Bellman-Ford - Overview

- Each router maintains a table
 - Row for each possible destination
 - Column for each directly-attached neighbor to node
 - Entry in row Y and column Z of node X ⇒ best known distance from X to Y, via Z as next hop = $D_Z(X,Y)$

Smallest distance in row Y = shortest Distance of A to Y, $D(A, Y)$
Bellman-Ford - Overview

- Each router maintains a table
 - Row for each possible destination
 - Column for each directly-attached neighbor to node
 - Entry in row Y and column Z of node X ⇒ best known distance from X to Y, via Z as next hop = \(D_Z(X,Y) \)
- Each local iteration caused by:
 - Local link cost change
 - Message from neighbor
- Notify neighbors only if least cost path to any destination changes
 - Neighbors then notify their neighbors if necessary

Distance Vector Algorithm (cont’d)

1. Initialization:
 - \(c(i,j) \): link cost from node i to j
 - \(D_{ij}(A,V) \): cost from A to V via Z
 - \(D(A,V) \): cost of A’s best path to V

2. for all neighbors V do
 - if V adjacent to A
 - \(D(A,V) = c(A,V) \)
 - else
 - \(D(A,V) = \infty \)
 - send \(D(A,Y) \) to all neighbors

3. loop:
 - wait (until A sees a link cost change to neighbor V /* case 1 */
 - or until A receives update from neighbor V) /* case 2 */
 - if (\(c(A,V) \) changes by \(\pm d \)) /* case 1 */
 - for all destinations Y that go through V do
 - \(D_V(A,Y) = D_V(A,Y) \pm d \)
 - else if (update \(D_V(A,Y) \) received from V) /* case 2 */
 - if (new minimum for destination Y)
 - send \(D(A,Y) \) to all neighbors

4. forever

Example: 1st Iteration (C ⇒ A)

```
Node A  B  C  A  C  D
B 2  8  A 2  =  =
C 7  =  =
D 8  =  =
```

```
Node B  A  C  D
A 2  =  =
C 1  =  =
D 3  =  =
```

```
Node C  A  B  D  A  B  C
A 7  =  =  A  =  =
B 1  =  =  B 3  =
D 9  =  =  C 1  =
```

```
Node D  A  B  C  D
A 2  =  =
C 1  =  =
D 3  =  =
```

```
D_{ij}(A,B) = D_{ij}(A,C) + D(C,B) = 7 + 1 = 8
D_{ij}(A,D) = D_{ij}(A,C) + D(C,D) = 7 + 1 = 8
```

```
D_{ij}(A,C) = D_{ij}(A,B) + D(B,C) = 2 + 1 = 3
D_{ij}(A,D) = D_{ij}(A,B) + D(B,D) = 2 + 3 = 5
```

Example: 1st Iteration (B ⇒ A)

```
Node A  B  C  A  C  D
B 2  8  A 2  =  =
C 3  7  =  =
D 5  8  =  =
```

```
Node B  A  C  D
A 2  =  =
C 1  =  =
D 3  =  =
```

```
Node C  A  B  D  A  B  C
A 7  =  =  A  =  =
B 1  =  =  B 3  =
D 9  =  =  C 1  =
```

```
Node D  A  B  C  D
A 2  =  =
B 1  =  =
C 3  =  =
```

```
D_{ij}(A,B) = D_{ij}(A,C) + D(C,B) = 7 + 1 = 8
D_{ij}(A,D) = D_{ij}(A,C) + D(C,D) = 7 + 1 = 8
```
Example: End of 1st Iteration

All nodes knows the best two-hop paths

Example: 2nd Iteration (A  B)

End of 2nd Iteration

All nodes knows the best three-hop paths

Example: End of 3rd Iteration

End of 2nd Iteration: Algorithm Converges!
Distance Vector: Link Cost Changes

Loop:
8. wait (until A sees a link cost change to neighbor V)
9. or until A receives update from neighbor V)
10. if (D(A,V) changes by ad) /* = case 1 */
11. for all destinations Y that go through V do
12. \(D(A,Y) = D(A,Y) + d \)
13. else if (update D(V,Y) received from V) /* = case 2 */
14. \(D(A,Y) = D(A) + D(V,Y) \)
15. if (there is a new minimum for destination Y)
16. send D(A,Y) to all neighbors
17. forever

Distance Vector: Poisoned Reverse

- If B routes through C to get to A:
 - B tells C its (B's) distance to A is infinite (so C won't route to A via B)
 - Will this completely solve count to infinity problem?

Routing Information Protocol (RIP)

- Simple distance-vector protocol
 - Nodes send distance vectors every 30 seconds
 - ... or, when an update causes a change in routing
- Link costs in RIP
 - All links have cost 1
 - Valid distances of 1 through 15
 - ... with 16 representing infinity
 - Small "infinity" ⇒ smaller "counting to infinity" problem
- RIP is limited to fairly small networks
 - E.g., campus
Link State vs. Distance Vector

Per-node message complexity:
- LS: $O(e)$ messages
 - e: number of edges
- DV: $O(d)$ messages, many times
 - d: node’s degree

Complexity/Convergence
- LS: $O(N \log N)$ computation
 - Requires global flooding
- DV: convergence time varies
 - Count-to-infinity problem

Robustness: what happens if router malfunctions?
- LS:
 - Node can advertise incorrect link cost
 - Each node computes only its own table
- DV:
 - Node can advertise incorrect path cost
 - Each node’s table used by others; errors propagate through network

Summary
- Routing is a distributed algorithm
 - Different from forwarding
 - React to changes in the topology
 - Compute the shortest paths
- Two main shortest-path algorithms
 - Dijkstra link-state routing (e.g., OSPF, IS-IS)
 - Bellman-Ford distance-vector routing (e.g., RIP)
- Convergence process
 - Changing from one topology to another
 - Transient periods of inconsistency across routers
- Next time: BGP
 - Reading: K&R 4.6.3