
1

Project 3 and
Software-Defined Networking (SDN)

EE122 Fall 2011

Scott Shenker

http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson
and other colleagues at Princeton and UC Berkeley



Introducing Project 3

• Scott: Background on Software-Defined Networking

(40 minutes)

• Yahel: Project Overview (10 minutes)

• Murphy: Software Architecture (10 minutes)

• TD and Kyriakos: Demo and Details (15 minutes)

2



Preliminaries

• Wanted to let you program a real device
– Marvell donated 250 of these “plug computers”, which 

we are sharing with NUST (Pakistan)

• Be gentle with us, we’ll be gentle with you…
– You break it early, we’ll fix it early

• If you are interested in doing something neat with 

your box, send me a proposal and we’ll let you 

continue to play with the box after end of 

semester.

• Do not lose your device…we need it back.

3



My Portion of Presentation

• SDN is a new approach to networking
– Not about “architecture”: IP, TCP, etc.

– But about design of network control (routing, TE,…)

• Full Disclosure: SDN invented by Nicira Networks
– Based on earlier work at Stanford, UCB, Princeton, CMU

• But this is not a sales pitch for Nicira
– Nicira sells products that happen to use SDN internally

– It does not sell SDN, nor market itself as an SDN company

4



Status of SDN

• Open Networking Foundation is standards body
– SDN endorsed by 49 companies

– Almost everyone who matters…..

• A few products on market, many more coming
– Some large companies using SDN internally

• SDN has won the war of words, the real battle 
over customer adoption is just beginning….

5



How is Project 3 Related to SDN?

• Project 3 uses SDN technology
– But SDN will be invisible to you (as it should be!)

• You will write program to control single switch
– Easy (in principle)!

• Similar program could control entire network
– Impossible without SDN…and whole goal of SDN

• I will provide motivation and context for SDN
– Absolutely no design details

6



Rules of Engagement

• Because short on time, I will not ask questions

• If you don’t understand what I’m saying, stop me.

• To pursue points more deeply, do so after class
– Goal here is not depth, but general intuition about SDN

7



Two Key Definitions

• Data Plane: processing and delivery of packets
– Based on state in routers and endpoints

– E.g., IP, TCP, Ethernet, etc.

– Fast timescales (per-packet)

• Control Plane: establishing the state in routers
– Determines how and where packets are forwarded

– Routing, traffic engineering, firewall state, …

– Slow time-scales (per control event)

8



9

The Future of Networking,

and the Past of Protocols

Scott Shenker

with Martín Casado, Teemu Koponen, Nick McKeown

(and many others….)



10

Key to Internet Success: Layers

Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits



11

Why Is Layering So Important?

• Decomposed delivery into fundamental components

• Independent but compatible innovation at each layer

• A practical success of unprecedented proportions…

• …but an academic failure



12

Built an Artifact, Not a Discipline

• Other fields in “systems”: OS, DB, DS, etc.

- Teach basic principles

- Are easily managed

- Continue to evolve

• Networking:

- Teach big bag of protocols

- Notoriously difficult to manage

- Evolves very slowly



13

Why Does Networking Lag Behind?

• Networks used to be simple: Ethernet, IP, TCP….

• New control requirements led to great complexity

- Isolation � VLANs, ACLs

- Traffic engineering � MPLS, ECMP, Weights

- Packet processing � Firewalls, NATs, 
middleboxes

- Payload analysis � Deep packet inspection (DPI)

- …..

• Mechanisms designed and deployed independently

- Complicated “control plane” design, primitive functionality

- Stark contrast to the elegantly modular “data plane” 



14

Infrastructure Still Works!

• Only because of “our” ability to master complexity

• This ability to master complexity is both a blessing…

- …and a curse!



15

A Simple Story About Complexity

• ~1985: Don Norman visits Xerox PARC 

- Talks about user interfaces and stick shifts



16

What Was His Point?

• The ability to master complexity is not the same as 
the ability to extract simplicity

• When first getting systems to work….

- Focus on mastering complexity

• When making system easy to use and understand

- Focus on extracting simplicity

• You will never succeed in extracting simplicity

- If don’t recognize it is different from mastering complexity



17

What Is My Point?

• Networking still focused on mastering complexity

- Little emphasis on extracting simplicity from control plane

- No recognition that there’s a difference….

• Extracting simplicity builds intellectual foundations

- Necessary for creating a discipline….

- That’s why networking lags behind



18

A Better Example: Programming

• Machine languages: no abstractions

- Mastering complexity was crucial

• Higher-level languages: OS and other abstractions

- File system, virtual memory, abstract data types, ...

• Modern languages: even more abstractions

- Object orientation, garbage collection,…

Abstractions key to extracting simplicity



19

“The Power of Abstraction”

“Modularity based on abstraction

is the way things get done”

− 
Barbara Liskov

Abstractions ���� Interfaces ���� Modularity

What abstractions do we have in networking?



20

Layers are Great Abstractions

• Layers only deal with the data plane

• We have no powerful control plane abstractions!

• How do we find those control plane abstractions?

• Two steps: define problem, and then decompose it.



21

The Network Control Problem

• Compute the configuration of each physical device

- E.g., Forwarding tables, ACLs,…

• Operate without communication guarantees

• Operate within given network-level protocol

Only people who love complexity would find 
this a reasonable request



22

Programming Analogy

• What if programmers had to:

- Specify where each bit was stored

- Explicitly deal with all internal communication errors

- Within a programming language with limited expressability

• Programmers would redefine problem:

- Define a higher level abstraction for memory

- Build on reliable communication abstractions

- Use a more general language

• Abstractions divide problem into tractable pieces

- And make programmer’s task easier



23

From Requirements to Abstractions

1. Operate without communication guarantees

Need an abstraction for distributed state

2. Compute the configuration of each physical device

Need an abstraction that simplifies configuration

3. Operate within given network-level protocol

Need an abstraction for general forwarding model

Once these abstractions are in place, 
control mechanism has a much easier job!



24

• SDN is defined precisely by these three abstractions

- Distribution, forwarding, configuration

• SDN not just a random good idea…

- Fundamental validity and general applicability

• SDN may help us finally create a discipline

- Abstractions enable reasoning about system behavior

- Provides environment where formalism can take hold….

• OK, but what are these abstractions?

My Entire Talk in One Sentence



25

1. Distributed State Abstraction

• Shield control mechanisms from state distribution 

- While allowing access to this state

• Natural abstraction: global network view

- Annotated network graph provided through an API

• Implemented with “Network Operating System”

• Control mechanism is now program using API

- No longer a distributed protocol, now just a graph algorithm

- E.g. Use Dijkstra rather than Bellman-Ford



26

Control Program

Software Defined Network (SDN)

Network OS

Global Network View

Traditional Control MechanismsNetwork of Switches and/or Routers

Distributed algorithm running between neighbors

e.g. routing, access control



27

Major Change in Paradigm

• No longer designing distributed control protocols

- Design one distributed system (NOS)

- Use for all control functions

• Now just defining a centralized control function

Configuration = Function(view)

• If you understand this, raise your hand.



28

2. Specification Abstraction

• Control program should express desired behavior

• It should not be responsible for implementing that 
behavior on physical network infrastructure

• Natural abstraction: simplified model of network

- Simple model with only enough detail to specify goals

• Requires a new shared control layer:

- Map abstract configuration to physical configuration

• This is “network virtualization”



29

Simple Example: Access Control

Global

Network 

View

Abstract 

Network

Model

How

What



30

Network OS

Global Network View

Abstract Network Model

Control ProgramNetwork Virtualization

Software Defined Network: Take 2



31

What Does This Picture Mean?

• Write a simple program to configure a simple model

- Configuration merely a way to specify what you want

• Examples

- ACLs: who can talk to who

- Isolation: who can hear my broadcasts

- Routing: only specify routing to the degree you care

• Some flows over satellite, others over landline

- TE: specify in terms of quality of service, not routes

• Virtualization layer “compiles” these requirements

- Produces suitable configuration of actual network devices

• NOS then transmits these settings to physical boxes



32

Network OS

Global Network View

Abstract Network Model

Control Program

Network Virtualization

Software Defined Network: Take 2

Specifies 

behavior

Compiles to 

topology

Transmits 

to switches



33

Two Examples Uses

• Scale-out router:

- Abstract view is single router

- Physical network is collection of interconnected switches

- Allows routers to “scale out, not up”

- Use standard routing protocols on top

• Multi-tenant networks:

- Each tenant has control over their “private” network

- Network virtualization layer compiles all of these individual 
control requests into a single physical configuration

• Hard to do without SDN, easy (in principle) with SDN



34

3. Forwarding Abstraction

• Switches have two “brains”

- Management CPU (smart but slow)

- Forwarding ASIC (fast but dumb)

• Need a forwarding abstraction for both

- CPU abstraction can be almost anything

• ASIC abstraction is much more subtle: OpenFlow

• OpenFlow:

- Control switch by inserting <header;action> entries

- Essentially gives NOS remote access to forwarding table

- Instantiated in OpenvSwitch



35

Does SDN Work?

• Is it scalable? Yes

• Is it less responsive? No

• Does it create a single point of failure? No

• Is it inherently less secure? No

• Is it incrementally deployable? Yes



36

SDN: Clean Separation of Concerns

• Control prgm: specify behavior on abstract model

- Driven by Operator Requirements

• Net Virt’n: map abstract model to global view

- Driven by Specification Abstraction

• NOS: map global view to physical switches

- API: driven by Distributed State Abstraction

- Switch/fabric interface: driven by Forwarding Abstraction



37

We Have Achieved Modularity!

• Modularity enables independent innovation

- Gives rise to a thriving ecosystem

• Innovation is the true value proposition of SDN

- SDN doesn’t allow you to do the impossible

- It just allows you to do the possible much more easily

• This is why SDN is the future of networking…


