Broadcasting to Groups

- Many applications are not one-one
 - Broadcast
 - Group collaboration
 - Proxy/Cache updates
 - Resource Discovery
- Packets must reach a Group rather than a single destination
 - Group membership may be dynamic
 - More than one group member might be a source
- Idea: After a group is established
 - Interested receivers join the group
 - The network takes care of group management
 - Recall RSVP
The Multicast service Model

- Membership access control
 - open group: anyone can join
 - closed group: restrictions on joining
- Sender access control
 - anyone can send to group
 - anyone in group can send to group
 - only one host can send to group
- Packet delivery is best effort
Multicast and Layering

- Multicast can be implemented at different layers
 - data link layer
 - e.g. Ethernet multicast
 - network layer
 - e.g. IP multicast
 - application layer
 - e.g. as an overlay network like Kazaa

- Which layer is best?
Multicast Implementation Issues

- How are multicast packets addressed?
- How is join implemented?
- How is send implemented?
 - How does multicast traffic get routed?
 - This is easy at the link layer and hardest at the network layer
- How much state is kept and who keeps it?
Ethernet Multicast

- Reserve some Ethernet MAC addresses for multicast
- To join group G
 - network interface card (NIC) normally only listens for packets sent to unicast address A and broadcast address B
 - to join group G, NIC also listens for packets sent to multicast address G (NIC limits number of groups joined)
 - implemented in hardware, so efficient
- To send to group G
 - packet is flooded on all LAN segments, like broadcast
 - can waste bandwidth, but LANs should not be very large
- Only host NICs keep state about who has joined → scalable to large number of receivers, groups
Limitations of Data Link Layer Multicast

- Single LAN
 - limited to small number of hosts
 - limited to low diameter latency
 - essentially all the limitations of LANs compared to internetworks

- Broadcast doesn’t cut it in larger networks
IP Multicast: Interconnecting LANS

- Interconnected LANs
- LANs support link-level multicast
- Map globally unique multicast address to LAN-based multicast address (LAN-specific algorithm)
- IP Group addresses are class D addresses
 - 1110/28 or 224.0.0.0 to 239.255.255.255
Operates between Router and local Hosts, typically attached via a LAN (e.g., Ethernet)

- Query response architecture
1. Router periodically queries the local Hosts for group membership information
 - Can be specific or general
2. Hosts receiving query set a random timer before responding
3. First host to respond sends membership reports
4. All the other hosts observe the query and suppress their own reports.

- To Join send a group send an unsolicited Join
 - Start a group by joining it
- To leave don’t have to do anything
 - Soft state
Naïve Routing Option: Don’t change anything

Point-to-point routing

Group abstraction not implemented in the network
This approach does not scale...
Instead build trees

Copy data at routers
At most one copy of a data packet per link

- Routers keep track of groups in real-time
- “Path” computation is Tree computation

• LANs implement layer 2 multicast by broadcasting
Routing: Approaches

- Kinds of Trees
 - Shared Tree
 - Source Specific Trees
- Tree Computation Methods
- Intradomain Update methods
 - Build on unicast Link State: MOSPF
 - Build on unicast Distance Vector: DVMRP
 - Protocol Independent: PIM
- Interdomain routing: BGMP
 - This is still evolving…
Problems with
Network Layer Multicast

- Scales poorly with number of groups
 - A router must maintain state for every group that traverses it
 - many groups traverse core routers
- Supporting higher level functionality is difficult
 - NLM: best-effort multi-point delivery service
 - Reliability and congestion control for NLM complicated
- Deployment is difficult and slow
 - Difficult to debug problems given the service model
Assume reliability through retransmission

Sender can not keep state about each receiver
 - e.g., what receivers have received
 - number of receivers unknown and possibly very large

Sender can not retransmit every lost packet
 - even if only one receiver misses packet, sender must retransmit, lowering throughput

N(ACK) implosion
 - described next
(N)ACK Implosion

- (Positive) acknowledgements
 - ack every n received packets
 - what happens for multicast?
- Negative acknowledgements
 - only ack when data is lost
 - assume packet 2 is lost
NACK Implosion

- When a packet is lost all receivers in the subtree originated at the link where the packet is lost send NACKs.
Avoiding NACK Implosions

- Every node estimates distance (in time) from every other node
 - Information is carried in session reports (< 5% of bandwidth)
- Nodes use randomized function of distance to decide when to
 - Send a request repair
 - Reply to a request repair
ISPs charge by bandwidth

Broadcast Center

Remember what interdomain protocols optimize for....

They make more money without multicast
Application Layer Multicast

- Provide multicast functionality above the IP unicast
- Gateway nodes could be the hosts or multicast gateways in the network

Advantages
- No multicast dial-tone needed
- Performance can be optimized to application
 - Loss, priorities etc.
- More control over the topology of the tree
- Easier to monitor and control groups

Disadvantages
- Scale
- Performance if just implemented on the hosts (not gateways)
Summary

- Large amount of work on multicast routing
- Major problems
 - preventing flooding
 - minimizing state in routers
 - denial-of-service attacks
 - deployment
- Multicast can be implemented at different layers
 - lower layers optimize performance
 - higher layers provide more functionality
- IP Multicast still not widely deployed
 - Ethernet multicast is deployed
 - application layer multicast systems are promising