Overlay Networks
EECS 122: Lecture 18

Department of Electrical Engineering and Computer Sciences
University of California
Berkeley

What is an overlay network?

- A network defined over another set of networks
- The overlay addresses its own nodes
- Links on one layer are network segments of lower layers
 - Requires lower layer routing to be utilized
- Overlaying mechanism is called tunneling

Overlay Concept: Going Up

Overlay Network Nodes

Overlay Concept: Going Down

Overlay Networks are extremely popular
- MBONE, Akamai, Virtual Private Networks, Napster, Gnutella
- Overlay Networks may even peer!

IP Network is the Overlay...

ATM links can be the “physical layer” for IP
Virtual Circuit under Datagram!

The underlying network induces a complete graph of connectivity
- No routing required!

But
- One virtual hop may be many underlying hops away.
- Latency and cost vary significantly over the virtual links.
- State information may grow with $\mathcal{O}(n^2)$.

Routing Issues
Relating the virtual topology to the underlying network

Message from 4 → 1

Routing Issues

- The underlying network induces a complete graph of connectivity
 - No routing required!
- But
 - One virtual hop may be many underlying hops away.
 - Latency and cost vary significantly over the virtual links.
 - State information may grow with E (n^2).
- At any given time, the overlay network picks a connected sub-graph based on nearest neighbors.
 - How often can vary.
 - Also, structured (Chord) vs unstructured (Gnutella)

End System Multicast Example

a) Physical Topology
b) Naive unicast transmission
c) IP multicast
d) Application level multicast

From "Computer Networks", by Peterson & Davie

Kinds of Overlay Networks

- Three kinds of Overlays
 - Only Hosts: Peer to Peer Networks (P2P)
 - Example: Gnutella, Napster
 - Only Gateway nodes: Infrastructure Overlays
 - Content Distribution Networks (CDNs)
 - Example: Akamai
 - Host and Gateway Nodes:
 - Virtual Private Networks
 - Overlay node structure
 - Regular: Chord, Pastry
 - Adhoc: Gnutella
- Functions
 - Route Enhancement: Better QoS, Application Level Multicast
 - Resource Discovery: P2P

Example: Napster
Distribute file location
- Idea: multicast the request
- How to find a file:
 - Send request to all neighbors
 - Neighbors recursively multicast the request
 - Eventually a machine that has the file receives the request, and it sends back the answer
- Advantages:
 - Totally decentralized, highly robust
- Disadvantages:
 - Not scalable; the entire network can be swamped with request (to alleviate this problem, each request has a TTL)

Assume: m1’s neighbors are m2 and m3; m3’s neighbors are m4 and m5:

Example of an Infrastructure Overlay

Outline
- Infrastructure Overlays
 - Adding performance and route functionality
 - Resource Discovery
- P2P Overlays
 - Resource Discovery in Gnutella
- Example of an Infrastructure Overlay
 - Application Level Multicast
- Example of a P2P Overlay
 - Content Addressable Networks
- Conclusions

Infrastructure Overlays
- Overlay network users are not directly connected to the overlay nodes
 - E.g. Akamai

Overlay Routing: Edge Mapping
- Overlay network users are not directly connected to the overlay nodes
 - E.g. Akamai
- User must be redirected to a “close by” overlay node
- Edge Mapping, or redirection function is hard since:
 - If potential users anonymous
 - User clients not under direct control
- When overlay clients are directly connected the edge mapping function is obviated:
 - E.g. P2P users/roles colocated

Overlay nodes interconnect clients
- Enhance nature of connection
 - Multicast
 - Secure
 - Low Loss
- Much easier to add functionality than to integrate into a router
Overlay Nodes Interconnect Clients
- Enhance nature of connection
- Secure
- Low Loss
- Much easier to add functionality than to integrate into a route
- Overlay nodes can become bottlenecks

Overlay network may contain resources. E.g.
- Servers
- Files
- Client makes request for resource
- Overlay must "search" for "closest" node that has the resource
- E.g. find the least loaded server that has a piece of content and that has low network latency to client
- A single "index" is not scalable
- Overlay launches a query to locate resource
- Query is "Routed" through the overlay until object is located
P2P Overlays

- Overlay network users are not directly connected to the overlay nodes
 - E.g. Napster, Gnutella
- No edge mapping problem
- No gateways to maintain
- But
- Nodes have limited resources
 - storage, connectivity, computational power

Example: Application Level Multicast

The Broadcast Internet

Broadcast Overlay Architecture

Broadcast Management

Summary

- Two kinds of overlays functions
 - Overlay provides access to distributed resources
 - Overlay facilitates communication among other client applications
- Two kinds of virtual topologies
 - Structured: mesh, ring etc.
 - Unstructured
- Two kinds of client connectivity
 - Direct: P2P
 - Not direct: Akamai
- Overlay Network Functions
 - Select Virtual Edges (fast or slow timescales)
 - Overlay Routing Protocol
 - Edge Mapping
 - Resource Location

Content Producer

Media Clients

Media Delivery System

Redirection

Application-level information for management and tracking
- Works across multiple networks
- Content Producer event programming with ad-hoc query audience statistics
CAN is one of several recent P2P architectures that imposes a structure on the virtual topology using a distributed hash-table data structure abstraction. Note: Item can be anything: a data object, document, file, pointer to a file…

Routes queries through the structured overlay attempts to distribute (object, location) pairs uniformly throughout the network supports object lookup, insertion and deletion of objects efficiently.

Others: Chord, Pastry, Tapestry

Associate to each node and item a unique id in an d-dimensional space

Routing table size O(d)

Guarantee that a file is found in at most \(d \cdot n^{1/d} \) steps, where \(n \) is the total number of nodes

Space divided between nodes All nodes cover the entire space Each node covers either a square or a rectangular area of ratios 1:2 or 2:1

Example:
- Assume space size (8 x 8)
- Node n1:(1, 2) first node that joins cover the entire space
- Node n2:(4, 2) joins space is divided between n1 and n2.
CAN Example: Two Dimensional Space

- Node n2:(4, 2) joins \(\rightarrow \) space is divided between n1 and n2.

- Nodes n4:(5, 5) and n5:(6,6) join.

- Nodes: n1:(1, 2); n2:(4,2); n3:(3, 5); n4:(5,5);n5:(6,6)

- Items: f1:(2,3); f2:(5,1); f3:(2,1); f4:(7,5);

Each item is stored by the node who owns its mapping in the space

CAN: Query Example

- Each node knows its neighbors in the \(d \)-space.
- Forward query to the neighbor that is closest to the query id.
- Example: assume n1 queries f4.

Adding/Deleting nodes

- New node picks a point P at random.
- Assuming it can find any overlay node, it sends a join message to the node which owns that point.
- When the message has reached P, the node divides itself in half along one of the dimensions (first x then y etc).
- Pairs are transferred and neighbor sets updated.
- Similar reasoning handles departures and failures.
Relating Virtual Topology to the Underlying Network

Example:
- Three landmarks
 - 0-30ms: level 0
 - 31-100ms: level 1
 - 101-300ms: level 2
- Node j measures latencies of 10ms, 110ms, 40ms to the three landmarks.
- The bin of node j is $[l_1, l_2, l_3 : 021]$

Neighbors should be close to each other in terms of latency on the underlying network.
Pick a set of well known landmark hosts.
Each node distributively computes its "bin":
- Nodes in the same bin are "close" to each other.
- Orders the landmark set in increasing order of RTT from it.
- Latency is partitioned into levels.
- Thus, associated with each landmark, at each node is a rank and a level.
- These values identify the bin.

And Their Overlay Analogs

Addressing:
- Uniquely identify the nodes
- host IP address, group address, attributes
- set is dynamic!

Topology Update:
- Characterize and maintain connectivity
- Discover topology
- Measure "distance" metric(s)
- Dynamically provision (on slower timescale)
- Destination Discovery: Find node identifiers of the destination set
- Route Computation: Pick the path (path)
- Kind of path: Multicast, Unicast
- Global or Distributed Algorithm
- Policy
- Hierarchy
- **Switching:** Forward the packets at each node

Your standard Networking Functions...

Addressing:
- Uniquely identify the nodes
- host IP address, group address, attributes
- set is dynamic!

Topology Update:
- Characterize and maintain connectivity
- Discover topology
- Measure "distance" metric(s)
- Dynamically provision (on slower timescale)
- Destination Discovery: Find node identifiers of the destination set
- Route Computation: Pick the path (path)
- Kind of path: Multicast, Unicast
- Global or Distributed Algorithm
- Policy
- Hierarchy
- **Switching:** Forward the packets at each node

Conclusions

- Overlays are an irreversible trend in network
- Overlays add new functions to the network infrastructure much faster than
 - by trying to integrate them in the router
 - relying on a infrastructure service provider on deploy the function
- **Disadvantages**
 - Overlay nodes can create performance bottlenecks
 - New end-to-end protocols may not work since the overlay nodes don’t understand them
 - Generally better to improve performance by building an “underlay” and add functionality by building an overlay