Socket Programuming

Nikhil Shetty
GSI, EECS122
Spring 2007

0041.00001L0L00L0OY00 01041 0L00L010L40000211110L001.0L010011L30L0000L00L0L110L00L0

1101010L0L0LL1010000410000101L00L0100L00L0L000 LDLlﬂLEIDLEI].EIlQEDU4LLLLLDLDDLDL

| DLDLDIDLDPEMM lHlLADlDDI;HDLEIDLﬁLLLDL OL oo

Outline

 APIs — Motivation
o Sockets

« C Socket APIs
* Tips for programming

What is an API?

» API — stands for Application Programming
Interface

What is an API?

» API — stands for Application Programming
Interface.

* [Interface to what? — In our case, it is an
Interface to use the network.

What is an API?

» API — stands for Application Programming
Interface.

* [Interface to what? — In our case, it is an
Interface to use the network.

* A connection to the transport layer.

What is an API?

» API — stands for Application Programming
Interface.

* [Interface to what? — In our case, it is an
Interface to use the network.

* A connection to the transport layer.

« WHY DO WE NEED IT?

Need for API

* One Word - Layering

* Functions at transport layer and below very
complex.

* E.g. Imagine having to worry about errors on
the wireless link and signals to be sent on the
radio.

* Helps in code reuse.

APPLICATION

TRANSPORT

NETWORK
LINK
PHYSICAL

11,001,01000021.13,01,.00001,001,01,1, L0100 0w p
11.00101.001001.0L00001.011.0100101.0% 40000 0100101000 01.00001.001L000.1.0100100 8 \

Layering Diagramatically

lum.m.u.r

What is a socket then?

 What is a socket?

-: ”."F |

':':i
|
1I].I].I D 1I Il D D].].I:ILB 1L010333000000 8 SO0L0Le Alon
il
11,0100 110

000L0O0LOT FEL] 7. [A

s

Introduction

« What is a socket?

* [t is an abstraction that is provided to an
application programmer to send or receive data
to another process.

Introduction

« What is a socket?

* [t is an abstraction that is provided to an
application programmer to send or receive data
to another process.

e Data can be sent to or received from another
process running on the same machine or a
different machine.

* In short, it is an end point of a data connection.

*ﬁ.—.{ﬂ:

Socket - An Abstraction

stdin

client
prograr

$tdnut

192.1658.100.2 | 192.168.100.1

socket

socket

Adapted from http.//www.troubleshooters.com/codecorn/sockets/

port
3355

¥inetd

stdin

SErEr
program

stdout

-

Sockets

It is like an endpoint of a connection
» Exists on either side of connection
* Identified by IP Address and Port number

» E.g. Berkeley Sockets in C
* Released in 1983
« Similar implementations in other languages

Engineers working on Sockets!!!

DILDLD 010L01LL01.0000 8% SO0

Ports

» Sending process must identify the receiver
— Address of the receiving end host

— Plus identifier (port) that specifies the receiving
Process

* Recelving host
» Destination address uniquely identifies the host

» Recelving process
* Host may be running many different processes

» Destination port uniquely identifies the socket =

» Port number is a 16-bit quantity

—

Port Usage

* Popular applications have “well-known ports”
« E.g., port 80 for Web and port 25 for e-maill
« Well-known ports listed at http://www.iana.org
« Well-known vs. ephemeral ports
 Server has a well-known port (e.g., port 80)
* By convention, between 0 and 1023; privileged
« Client gets an unused “ephemeral” (i.e., temporary) port
« By convention, between 1024 and 65535
* Flow identification

* The two |IP addresses plus the two port numbers
« Sometimes called the “four-tuple”

- Underlying transport protocol (e.g., TCP orUDP) _

* The “five-tuple”

Ports (Main Points)

* Not related to the physical architecture of the
computer.

» Just a number maintained by the operating
system to identify the end point of a connection.

TCP (stream) sockets

* Also known as SOCK_STREAM

« TCP is a connection-oriented byte-stream
protocol

* During data packet. transmission, no packetization
and addressing required by application.

* Formatting has to be provided by application.

* Two or more successive data sends on the pipe
connected to socket may be combined together by
TCP in a single packet.

* E.g. Send "Hi" then send “Hello Nikhil”is combined _
by TCP to send as “HiHello Nikhil” -

*ﬁ.—.{ﬂ:

UDP (datagram) sockets

* Also known as SOCK_DGRAM

 UDP is connectionless and packet-oriented.
* Info sent in packet format as needed by app.
» Every packet requires address information.
 Lightweight, no connection required.

» QOverhead of adding destination address with each
packet at the application layer. (Can be eliminated
by “connecting” — see later)

» Distinction in the way these sockets are used e
by different hosts — client and server. _a

Client — Server Architecture

Tier 1 Tier 2 Tier 3
{ Presentation) {Business Logic) (Data/Resource)
Clients Applicaticon
Servers
-
e
.._
=g
— LA
.
=g
A - L
- L
Rescumre Resources
Maraoer fforexampl
databazos)

From http://publib.boulder.ibm.com/infocenter/txen/topic/com.ibm.txseries510.doc/atshak0011.htm

Flow in client-server model

Cliert Side Server Side
= < |
=1 : -I =1 : -I
E-Jth:et E-Jth:et
¥ ¥
COarrpest bind

listen

write
ret-:lD acjept

close

Typical Client Program

* Prepare to communicate.
» Create a socket.
« Determine server address and port number.
* |nitiate the connection to the server (TCP).
» Exchange data with the server.
« Write data to the socket.
 Read data from the socket.

* Note, single socket supports both reading and
writing.

« Manipulate the data (e.g., display email, play music) |

» Close the socket.

Typical Server Program

* Prepare to communicate
« Create a socket
« Associate local address and port with the socket

« Wait to hear from a client (passive open)
* Indicate how many clients-in-waiting to permit
« Accept an incoming connection from a client

« Exchange data with the client over new socket
* Recelive data from the socket
« Do stuff to handle the request (e.g., get a file)
« Send data to the socket

» Close the socket ' C |

- Repeat with the next connection request

One Server One port Many clients

» Consider a webserver running on port 80.
» All clients connect to the same port number.
» How do you distinguish between clients?

One Server One port Many clients

» Consider a webserver running on port 80.

» All clients connect to the same port number.
» How do you distinguish between clients?

« Source IP Address!

* How do you distinguish between multiple
connections from the same IP Address?

One Server One port Many clients

» Consider a webserver running on port 80.

» All clients connect to the same port number.
» How do you distinguish between clients?

« Source IP Address!

* How do you distinguish between multiple
connections from the same IP Address?

» OS uses the incoming packet’s source IP "
address and port number to distinguish. v~

Going into the APIs

» Will look into programming from now on.
« Stop me when not clear.
* Oriflam too fast.

» Or if you have never seen something and | am
assuming you have!

» Most examples from “Beegj’s guide” — link
posted online.

* More examples in there. You should look info
them. -y

 Helpful for the project.

_—
i

Creating a socket

« Operation to create a socket

* Int socket(int domain, int type, int protocol)

« Returns a descriptor (or handle) for the socket
 Originally designed to support any protocol suite
Domain: protocol family

 Use PF_INET for the Internet

Type: semantics of the communication

« SOCK _STREAM: reliable byte stream

« SOCK_ DGRAM: message-oriented service

Protocol: specific protocol

« UNSPEC: unspecified. No need for us to specify, since

PF_INET plus SOCK_STREAM already implies TCP, or ~_

SOCK_DGRAM implies UDP.
Used by both server and client to create sockef!

—

Connecting to server

 Establishing the connection

* int connect(int sockfd, struct sockaddr
*server_address, socketlen t addrlen)

« Arguments: socket descriptor, server address, and
address size

 Returns 0 on success, and -1 if an error occurs

 sockfd stands for socket file decriptor.
 Remember everything in Unix is a file.

 What is sockaddr?

» struct to store the IP address and port number you
want to connect to. |

Struct sockaddr in

« Struct sockaddr in has information about the
destination IP address and port.

« Same size as sockaddr.
* Must be used in the following way.
 Use AF INET in sockaddr and not PF_INET.

int sockfd;

struct sockaddr_in dest_addr; // will hold the destination addr
sockfd = socket (PF_INET, SOCK_STREAM, 0); // do some error checking!
dest_addr.sin_family = AF_INET; // host byte order
dest_addr.sin_port = htons(DEST_PORT); // short, network byte order
dest_addr.sin_addr.s_addr = inet_addr (DEST_IP);

memset (& (dest_addr.sin_zero), ’'\0’, 8); // zero the rest of the struct,f“ﬁ
// don’t forget to error check the connect () ! g |

connect (sockfd, (struct sockaddr *)&dest_addr, sizeof(strubf sockaddr)) ;

em———

Byte Ordering

* The networking API provides us the following
functions:
* uint16_t htons(uint16_t host16bitvalue);
« Uint32_t htonl(uint32_t host32bitvalue);
 Uint16_t ntohs(uint16_t net16bitvalue);
* uint32_t ntohl(uint32_t net32bitvalue);

» Use for all 16-bit and 32-bit binary numbers
(short, int) to be sent across network

» ‘h’ stands for “host order” £
» These routines do nothing on big-endian hosts

IP Addresses

 |P Addresses should be in network format in a
packet.

* We need to convert between ascii (dot format)
and network format.

» Accomplished by inet_aton and inet_ntoa

struct sockaddr_in antelope;
char *some_addr;

inet_aton("10.0.0.1", &antelope.sin_addr); // store IP in
antelope

some_addr = inet_ntoa(antelope.sin_addr); // return the IP

printf ("$s\n", some_addr); // prints "10.0.0.1" gl
g

Sending Data

« Sending data
» Ssize t write(int sockfd, void *buf, size tlen)

« Arguments: socket descriptor, pointer to buffer of data to
send, and length of the buffer

* Returns the number of characters written, and -1 on error

* Recelving data
» Ssize t read(int sockfd, void *buf, size tlen)

« — Arguments: socket descriptor, pointer to buffer to place the
data, size of the buffer

» Returns the number of characters read (where 0 implies
“end of file”), and -1 on error

» Closing the socket
* Int close(int sockfd)

Sending and Receiving (contd)

* Note: instead of using write(), you can instead use
send(), which is intended for use with sockets.
« Only difference is send() takes one additional argument of
flags, which for most purposes don’t matter
« Similarly, instead of using read(), you can instead use
recv().
« Again, only difference is one additional argument of flags

* Important to realize they're basically equivalent, since
you see both pairs of calls used (sometimes
intermingled).

Example

chian “ms'gl = TNl hic HENSiy

int len, bytes_sent;

len = strlen(msg);

bytes_sent = send(sockfd, msg, len, 0);

o [fthe return value is -1 there is some error.

« Ifreturn value is less than the length of the message, it means the whole
message was not sent for some reason.

» Then resend the remaining message.

int total = 0; // how many bytes we’ve sent
int bytesleft = *len; // how many we have left to send
aLiflE. i
while(total < *len) {
n = send(s, buf+total, bytesleft, 0);

if (n == -1) { break; }
total += nj;
bytesleft —-= n;

fod

Server - Passive listening

» Passive open
* Prepare to accept connections
* ... but don’t actually establish one
* ... until hearing from a client

» Hearing from multiple clients

 Allow a backlog of waiting clients

* ... In case several try to start a connection at once
» Create a socket for each client

» Upon accepting a new client

. ... create a new socket for the communication

—

Preparing a socket

» Bind socket to the local address and port
number

* int bind (int sockfd, struct sockaddr *my _adar,
socklen t addrlen)

« Arguments: socket descriptor, server address,
address length

 Returns 0 on success, and -1 if an error occurs

» Define how many connections can be pending
* int listen(int sockfd, int backlog)

« Arguments: socket descriptor and acceptable =
backlog ' C

 Returns 0 on success, and -1 on efror

e

Accepting a connection

» Accept a new connection from a client

* int accept(int sockfd, struct sockaddr *adar,
socklen _t *addrlen)

* Arguments: socket descriptor, structure that will
provide client address and port, and length of the

structure.
» Returns descriptor for a new socket for this
connection.
* Accept will block the process if there are no
clients trying to connect. el

Example

gl Meeclkitel | | mew Tl
struct sockaddr_in my_addr; // my address information

struct sockaddr_in their_ addr; // connector’s address
information
int sin_size; // size of sockaddr

sockfd = socket (PF_INET, SOCK_STREAM, 0); my_addr.sin_family =
AF_INET; // host byte order

my_addr.sin_port = htons (MYPORT); // short, network byte order
my_addr.sin_addr.s_addr = INADDR_ANY; // auto-fill with my IP

memset (& (my_addr.sin_zero), '"\0’, 8); // zero the rest of the
struct

bind(sockfd, (struct sockaddr *)&my_addr, sizeof (struct
sockaddr)) ;

listen(sockfd, BACKLOG) ;
sin_size = sizeof (struct sockaddr_in);

new_fd = accept(sockfd, (struct sockaddr *)&their_addr,
&sin_size) ;

fod

Datagram sockets

» Datagram sockets may be used with/without
connect.

« Connecting a data socket does not create a
connection.

* Only fills in the address everytime you use a send().
* In this case, use sendto() and recvfrom().

Advanced Aspects

* A general program may have many sockets
open.

» Also it could have other sources of input like
stdin or timers.

» What options does a program have for keeping
a check on all these sources?

* Polling
» Very inefficient — Don't use.

» Using select()
o Efficient and preferred method.

Select()

« Select()
« Wait on multiple file descriptors/sockets and timeout
 Application does not consume CPU while waiting

« Return when file descriptors/sockets are ready to
beread or written or they have an error, or timeout
exceeded

» Disadvantages

* Does not scale to large number of
descriptors/sockets

» More awkward to use than it needs to begi

—

Select() - contd

FD_ZERO (fd_set *set) — clears a file descriptor set
FBD SET (1nt)| SdttciislEinaa ==y (elcid sy f§ds moathel sel

MO LGBk (el & F@ sen wgel) = |lcaenovelk, Stel aiaten! #@ie | get
FD ISSET(int fd, fd _set *set) - tests to see 1f fd 1is

in the set

* Int select(int numfds, fd_set *readfds, fd_set
*writefds, fd_set *exceptfds, struct timeval
*timeout);

 The macros are used to set, clear and check
conditions on the fds In the set.

Example

e #include <stdio.h>
e #include <sys/time.h>
e #include <sys/types.h>
e #include <unistd.h>
e #define STDIN 0 // file descriptor for standard input
& HinE nilcaaln (& onkal
9 i
e struct timeval tv;
e fd_set readfds;
e tv.tv_sec = 2;
e tv.tv_usec = 500000;
e FD ZERO(&readfds) ;
e FD SET(STDIN, &readfds);
« // don’t care about writefds and exceptfds:
e select (STDIN+1, &readfds, NULL, NULL, &tv);
e 1f (FD_ISSET(STDIN, &readfds))
e printf ("A key was pressed!\n");
e else
e printf ("Timed out.\n");

fod

e return 0;

Some Programming Hints

» Check Begj’s guide (it is on the syllabus page)
 Has information on all the APIs available.

 Also tells you which header files to include for the
different APIs.

» Also, it is best to catch errors using the
returning values of the APIs.

» Makes things easier to debug
* And you know where the program fails.

if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof (struct
sockaddr)) == -1) {

perror ("bind") ;
exit (1) ;
}

Perror and strerror

« Use perror and strerror

e [fthere is an error errno variable is set to a value and
that gives more info on the error.

« Ofcourse there are also the man pages!

int s;

s = socket (PF_INET, SOCK_STREAM, O0);

if (s == -1) { // some error has occurred

// prints "socket error: " + the error message:

perror ("socket error");
}
// similarly:
if (listen(s, 10) == -1) {
// this prints "an error: " + the error message from errno: vl

printf ("an error: %s\n", strerror(errno));

}

—

Network Programming Tips (contd)

* How to check if particular port is listening

 Windows — use netstat
e netstat -an

e Linux —use nmap
 nmap -sT -O localhost

Tip: Use port numbers greater than 1024.

Server can't bind because old connection hasn’t yet
gone away.

« Use setsockopt with the SO _REUSEADDR option.

Not knowing what exactly gets transmitted on the wire
« Use tcpdump or Ethereal (www.ethereal.com)

-

Check RFCs if in doubt about protoco/s g
o http://www.ietf.org/rfc]

—

