
Socket ProgrammingSocket ProgrammingSocket ProgrammingSocket Programming

Nikhil Shetty

GSI, EECS122

Spring 2007

Outline

• APIs – Motivation

• Sockets

• C Socket APIs

• Tips for programming

What is an API?

• API – stands for Application Programming
Interface

What is an API?

• API – stands for Application Programming
Interface.

• Interface to what? – In our case, it is an
interface to use the network.

What is an API?

• API – stands for Application Programming
Interface.

• Interface to what? – In our case, it is an
interface to use the network.

• A connection to the transport layer.

What is an API?

• API – stands for Application Programming
Interface.

• Interface to what? – In our case, it is an
interface to use the network.

• A connection to the transport layer.

• WHY DO WE NEED IT?

Need for API

• One Word - Layering

• Functions at transport layer and below very
complex.

• E.g. Imagine having to worry about errors on
the wireless link and signals to be sent on the
radio.

• Helps in code reuse.

PHYSICAL

LINK

NETWORK

TRANSPORT

API

APPLICATION

Layering Diagramatically

API

Application

System Calls

LAN Card

Radio

What is a socket then?

• What is a socket?

Introduction

• What is a socket?

• It is an abstraction that is provided to an
application programmer to send or receive data
to another process.

Introduction

• What is a socket?

• It is an abstraction that is provided to an
application programmer to send or receive data
to another process.

• Data can be sent to or received from another
process running on the same machine or a
different machine.

• In short, it is an end point of a data connection.

Socket – An Abstraction

Adapted from http://www.troubleshooters.com/codecorn/sockets/

Sockets

• It is like an endpoint of a connection

• Exists on either side of connection

• Identified by IP Address and Port number

• E.g. Berkeley Sockets in C

• Released in 1983

• Similar implementations in other languages

Engineers working on Sockets!!!

http://www.fotosearch.com/MDG238/frd1404/

Ports

• Sending process must identify the receiver

– Address of the receiving end host

– Plus identifier (port) that specifies the receiving

process

• Receiving host

• Destination address uniquely identifies the host

• Receiving process

• Host may be running many different processes

• Destination port uniquely identifies the socket

• Port number is a 16-bit quantity

Port Usage

• Popular applications have “well-known ports”
• E.g., port 80 for Web and port 25 for e-mail

• Well-known ports listed at http://www.iana.org

• Well-known vs. ephemeral ports
• Server has a well-known port (e.g., port 80)

• By convention, between 0 and 1023; privileged
• Client gets an unused “ephemeral” (i.e., temporary) port

• By convention, between 1024 and 65535

• Flow identification
• The two IP addresses plus the two port numbers

• Sometimes called the “four-tuple”

• Underlying transport protocol (e.g., TCP or UDP)

• The “five-tuple”

Ports (Main Points)

• Not related to the physical architecture of the
computer.

• Just a number maintained by the operating
system to identify the end point of a connection.

TCP (stream) sockets

• Also known as SOCK_STREAM

• TCP is a connection-oriented byte-stream
protocol
• During data packet. transmission, no packetization

and addressing required by application.

• Formatting has to be provided by application.

• Two or more successive data sends on the pipe
connected to socket may be combined together by
TCP in a single packet.

• E.g. Send “Hi” then send “Hello Nikhil” is combined
by TCP to send as “HiHello Nikhil”

UDP (datagram) sockets

• Also known as SOCK_DGRAM

• UDP is connectionless and packet-oriented.
• Info sent in packet format as needed by app.

• Every packet requires address information.

• Lightweight, no connection required.

• Overhead of adding destination address with each
packet at the application layer. (Can be eliminated
by “connecting” – see later)

• Distinction in the way these sockets are used
by different hosts – client and server.

Client – Server Architecture

From http://publib.boulder.ibm.com/infocenter/txen/topic/com.ibm.txseries510.doc/atshak0011.htm

Flow in client-server model

• http://www.process.com/tcpip/tcpware57docs/Programmer/fig1-2.gif

Typical Client Program

• Prepare to communicate.
• Create a socket.

• Determine server address and port number.

• Initiate the connection to the server (TCP).

• Exchange data with the server.
• Write data to the socket.

• Read data from the socket.

• Note, single socket supports both reading and
writing.
• Manipulate the data (e.g., display email, play music)

• Close the socket.

Typical Server Program

• Prepare to communicate

• Create a socket

• Associate local address and port with the socket

• Wait to hear from a client (passive open)

• Indicate how many clients-in-waiting to permit

• Accept an incoming connection from a client

• Exchange data with the client over new socket

• Receive data from the socket

• Do stuff to handle the request (e.g., get a file)

• Send data to the socket

• Close the socket

• Repeat with the next connection request

One Server One port Many clients

• Consider a webserver running on port 80.

• All clients connect to the same port number.

• How do you distinguish between clients?

One Server One port Many clients

• Consider a webserver running on port 80.

• All clients connect to the same port number.

• How do you distinguish between clients?

• Source IP Address!

• How do you distinguish between multiple
connections from the same IP Address?

One Server One port Many clients

• Consider a webserver running on port 80.

• All clients connect to the same port number.

• How do you distinguish between clients?

• Source IP Address!

• How do you distinguish between multiple
connections from the same IP Address?

• OS uses the incoming packet’s source IP
address and port number to distinguish.

Going into the APIs

• Will look into programming from now on.

• Stop me when not clear.

• Or if I am too fast.

• Or if you have never seen something and I am
assuming you have!

• Most examples from “Beej’s guide” – link
posted online.

• More examples in there. You should look into
them.

• Helpful for the project.

Creating a socket

• Operation to create a socket
• int socket(int domain, int type, int protocol)
• Returns a descriptor (or handle) for the socket

• Originally designed to support any protocol suite

• Domain: protocol family
• Use PF_INET for the Internet

• Type: semantics of the communication
• SOCK_STREAM: reliable byte stream
• SOCK_DGRAM: message-oriented service

• Protocol: specific protocol
• UNSPEC: unspecified. No need for us to specify, since

PF_INET plus SOCK_STREAM already implies TCP, or
SOCK_DGRAM implies UDP.

• Used by both server and client to create socket.

Connecting to server

• Establishing the connection

• int connect(int sockfd, struct sockaddr

*server_address, socketlen_t addrlen)

• Arguments: socket descriptor, server address, and

address size

• Returns 0 on success, and -1 if an error occurs

• sockfd stands for socket file decriptor.

• Remember everything in Unix is a file.

• What is sockaddr?

• struct to store the IP address and port number you

want to connect to.

Struct sockaddr_in

• Struct sockaddr_in has information about the
destination IP address and port.

• Same size as sockaddr.

• Must be used in the following way.

• Use AF_INET in sockaddr and not PF_INET.
int sockfd;

struct sockaddr_in dest_addr; // will hold the destination addr

sockfd = socket(PF_INET, SOCK_STREAM, 0); // do some error checking!

dest_addr.sin_family = AF_INET; // host byte order

dest_addr.sin_port = htons(DEST_PORT); // short, network byte order

dest_addr.sin_addr.s_addr = inet_addr(DEST_IP);

memset(&(dest_addr.sin_zero), ’\0’, 8); // zero the rest of the struct

// don’t forget to error check the connect()!

connect(sockfd, (struct sockaddr *)&dest_addr, sizeof(struct sockaddr));

Byte Ordering

• The networking API provides us the following
functions:

• uint16_t htons(uint16_t host16bitvalue);

• uint32_t htonl(uint32_t host32bitvalue);

• uint16_t ntohs(uint16_t net16bitvalue);

• uint32_t ntohl(uint32_t net32bitvalue);

• Use for all 16-bit and 32-bit binary numbers
(short, int) to be sent across network

• ‘h’ stands for “host order”

• These routines do nothing on big-endian hosts

IP Addresses

• IP Addresses should be in network format in a
packet.

• We need to convert between ascii (dot format)
and network format.

• Accomplished by inet_aton and inet_ntoa
struct sockaddr_in antelope;

char *some_addr;

inet_aton("10.0.0.1", &antelope.sin_addr); // store IP in

antelope

some_addr = inet_ntoa(antelope.sin_addr); // return the IP

printf("%s\n", some_addr); // prints "10.0.0.1"

Sending Data

• Sending data
• ssize_t write(int sockfd, void *buf, size_t len)

• Arguments: socket descriptor, pointer to buffer of data to
send, and length of the buffer

• Returns the number of characters written, and -1 on error

• Receiving data
• ssize_t read(int sockfd, void *buf, size_t len)

• – Arguments: socket descriptor, pointer to buffer to place the
data, size of the buffer

• Returns the number of characters read (where 0 implies
“end of file”), and -1 on error

• Closing the socket
• int close(int sockfd)

Sending and Receiving (contd)

• Note: instead of using write(), you can instead use

send(), which is intended for use with sockets.

• Only difference is send() takes one additional argument of

flags, which for most purposes don’t matter

• Similarly, instead of using read(), you can instead use

recv().

• Again, only difference is one additional argument of flags

• Important to realize they’re basically equivalent, since

you see both pairs of calls used (sometimes

intermingled).

Example
char *msg = "I was here!";

int len, bytes_sent; ...

len = strlen(msg);

bytes_sent = send(sockfd, msg, len, 0);

• If the return value is -1 there is some error.
• If return value is less than the length of the message, it means the whole

message was not sent for some reason.
• Then resend the remaining message.

int total = 0; // how many bytes we’ve sent

int bytesleft = *len; // how many we have left to send

int n;

while(total < *len) {

n = send(s, buf+total, bytesleft, 0);

if (n == -1) { break; }

total += n;

bytesleft -= n;

}

Server – Passive listening

• Passive open

• Prepare to accept connections

• … but don’t actually establish one

• … until hearing from a client

• Hearing from multiple clients

• Allow a backlog of waiting clients

• ... in case several try to start a connection at once

• Create a socket for each client

• Upon accepting a new client

• … create a new socket for the communication

Preparing a socket

• Bind socket to the local address and port
number
• int bind (int sockfd, struct sockaddr *my_addr,

socklen_t addrlen)

• Arguments: socket descriptor, server address,
address length

• Returns 0 on success, and -1 if an error occurs

• Define how many connections can be pending
• int listen(int sockfd, int backlog)

• Arguments: socket descriptor and acceptable
backlog

• Returns 0 on success, and -1 on error

Accepting a connection

• Accept a new connection from a client

• int accept(int sockfd, struct sockaddr *addr,

socklen_t *addrlen)

• Arguments: socket descriptor, structure that will

provide client address and port, and length of the

structure.

• Returns descriptor for a new socket for this
connection.

• Accept will block the process if there are no
clients trying to connect.

Example

int sockfd, new_fd;

struct sockaddr_in my_addr; // my address information

struct sockaddr_in their_addr; // connector’s address
information

int sin_size; // size of sockaddr

sockfd = socket(PF_INET, SOCK_STREAM, 0); my_addr.sin_family =
AF_INET; // host byte order

my_addr.sin_port = htons(MYPORT); // short, network byte order

my_addr.sin_addr.s_addr = INADDR_ANY; // auto-fill with my IP

memset(&(my_addr.sin_zero), ’\0’, 8); // zero the rest of the
struct

bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct
sockaddr));

listen(sockfd, BACKLOG);

sin_size = sizeof(struct sockaddr_in);

new_fd = accept(sockfd, (struct sockaddr *)&their_addr,
&sin_size);

Datagram sockets

• Datagram sockets may be used with/without
connect.

• Connecting a data socket does not create a

connection.

• Only fills in the address everytime you use a send().

• In this case, use sendto() and recvfrom().

Advanced Aspects

• A general program may have many sockets
open.

• Also it could have other sources of input like
stdin or timers.

• What options does a program have for keeping
a check on all these sources?

• Polling

• Very inefficient – Don’t use.

• Using select()

• Efficient and preferred method.

Select()

• Select()

• Wait on multiple file descriptors/sockets and timeout

• Application does not consume CPU while waiting

• Return when file descriptors/sockets are ready to

beread or written or they have an error, or timeout

exceeded

• Disadvantages

• Does not scale to large number of
descriptors/sockets

• More awkward to use than it needs to be

Select() - contd

FD_ZERO(fd_set *set) – clears a file descriptor set

FD_SET(int fd, fd_set *set) – adds fd to the set

FD_CLR(int fd, fd_set *set) – removes fd from the set

FD_ISSET(int fd, fd_set *set) – tests to see if fd is

in the set

• int select(int numfds, fd_set *readfds, fd_set
*writefds, fd_set *exceptfds, struct timeval
*timeout);

• The macros are used to set, clear and check
conditions on the fds in the set.

Example

• #include <stdio.h>

• #include <sys/time.h>

• #include <sys/types.h>

• #include <unistd.h>

• #define STDIN 0 // file descriptor for standard input

• int main(void)

• {

• struct timeval tv;

• fd_set readfds;

• tv.tv_sec = 2;

• tv.tv_usec = 500000;

• FD_ZERO(&readfds);

• FD_SET(STDIN, &readfds);

• // don’t care about writefds and exceptfds:

• select(STDIN+1, &readfds, NULL, NULL, &tv);

• if (FD_ISSET(STDIN, &readfds))

• printf("A key was pressed!\n");

• else

• printf("Timed out.\n");

• return 0;

• }

Some Programming Hints

• Check Beej’s guide (it is on the syllabus page)
• Has information on all the APIs available.

• Also tells you which header files to include for the
different APIs.

• Also, it is best to catch errors using the
returning values of the APIs.
• Makes things easier to debug

• And you know where the program fails.
if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct

sockaddr)) == -1) {

perror("bind");

exit(1);

}

Perror and strerror

• Use perror and strerror

• If there is an error errno variable is set to a value and

that gives more info on the error.

• Ofcourse there are also the man pages!

int s;

s = socket(PF_INET, SOCK_STREAM, 0);

if (s == -1) { // some error has occurred

// prints "socket error: " + the error message:

perror("socket error");

}

// similarly:

if (listen(s, 10) == -1) {

// this prints "an error: " + the error message from errno:

printf("an error: %s\n", strerror(errno));

}

Network Programming Tips (contd)

• How to check if particular port is listening
• Windows – use netstat

• netstat -an

• Linux – use nmap
• nmap -sT -O localhost

• Tip: Use port numbers greater than 1024.

• Server can’t bind because old connection hasn’t yet
gone away.
• Use setsockopt with the SO_REUSEADDR option.

• Not knowing what exactly gets transmitted on the wire
• Use tcpdump or Ethereal (www.ethereal.com)

• Check RFCs if in doubt about protocols.
• http://www.ietf.org/rfc

