Discrete Fourier Series

C.T.F.T. \[X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \]

D.T.F.T. \[X(n) = \sum_{n=-\infty}^{\infty} x(n) e^{-j2\pi n} \]

D.F. Series. \[X(k) = \sum_{n} x(n) e^{-j2\pi nk/N} \]

D.F.T. \[X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N} \]
DFS - Discrete Fourier Series

Deal with $x(n)$ periodic, discrete time signal.

$$x(n) = x(n + kN)$$

any integer = period.

Idea: Decompose $x(n)$ in terms of exponentials.

periodic with period N.

$$e_{k}(n) = e^{j2\pi nk/N} \quad \forall \ n \in \mathbb{Z}$$

There are N periodic exponentials with period N.

$$\hat{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(k) e^{-j2\pi nk/N}$$

weights
\(e_{\pi}(x) \) is periodic with period \(\pi \) if \(\pi + \pi = \pi \) or \(e^x + e^x = e^x \) arbitrary.

Proof:

\[
2 \frac{2\pi}{e} = e^{2\pi} \Rightarrow e^{2\pi} = e^{2\pi} = e^{2\pi} = e^{2\pi}
\]
How find "weight" \(X(k) \)?

Proposal:

\[
X(k) = \sum_{n=0}^{N-1} X(n) e^{-j2\pi nk/N}
\]

Proof:

\[
X(k) = \sum_{n=0}^{N-1} \left(\frac{1}{N} \sum_{l=-N/2}^{N/2} X(l) e^{j2\pi l n/N} \right) e^{-j2\pi kn/N}
\]

\[
= X(0) + \sum_{l=1}^{N-1} X(l) e^{-j2\pi l k/N}
\]

What is \(A \)?

\[
\sqrt{2} \sum_{l=0}^{N-1} X(l) S(l-k-rN) = X(k+rN)
\]
Case (i): If \(k \) is an int. multiple of \(N \).

\[l - k = rN \]

\[\sum_{n=0}^{\infty} \frac{e^{j2\pi rNn}}{N} = 1 \]

Case (ii): \(l - k \neq rN \) and \(k \) is not an int. multiple of \(N \).

\[A = \sum_{n=0}^{\infty} e^{j2\pi (l-k)n} \]

Recall \(\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha} \)

\[A = \frac{1}{N} \]

\[A = \delta(l-k-rN) \]
\[X(k) = X(k+rN) \]

\[Y = \text{arb. int.} \]

\[\Rightarrow \]

\[\text{From now on refer to } X(k) \]
DFS
\[X(k) = \sum_{n=-\infty}^{\infty} x(n) e^{-j2\pi nk} \]

Analysis:
DFS

\[X(n) = \sum_{k=-\infty}^{\infty} x(k) e^{j2\pi nk} \]

Synthesis:
DFS

Periodic point

Perodic

\[X \]
Shift Property

\[
\hat{x}(n) \xrightarrow{\text{d}} \frac{\hat{x}(k)}{e^{-j2\pi nk/N}} \xrightarrow{\text{d}} \hat{x}_3(k)
\]

Periodic Convolution:

\[
\hat{x}_1 \ast \hat{x}_2 = \hat{x}_3 \quad \text{period } N
\]

\[
\hat{x}_3(k) = \hat{x}_1(k) \hat{x}_2(k)
\]
The Discrete Fourier Transform (DFT) is given by:

\[X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N} \]

where \(x(n) \) is the input sequence, \(X(k) \) is the output sequence, and \(N \) is the length of the sequence. The DFT maps a sequence of \(N \) complex numbers to another sequence of \(N \) complex numbers.
First Approach To DFT via DFS

1. Start with a finite discrete seq \(x(n) \)

 \(N \) points long \(n = 0, \ldots, N-1 \)

2. "Periodicize" \(x(n) \) to get \(\hat{x}(n) \) with

 \(R_N(n) \)

 \[R_N(n) = \begin{cases} 1 & n = 0, \ldots, N-1 \\ 0 & \text{otherwise} \end{cases} \]

 \[\hat{x}(n) = \sum_{k=-\infty}^{+\infty} x(n + kN) \]
3. Take DFS of \(x(n) \) → \(\hat{X}(k) \)

4. Take one period of \(\hat{X}(k) \) to get

\[
\hat{X}(k) = \text{DFT of } x(n)
\]

\[
\hat{X}(k) = X(k) R_{Npt}(k)
\]

\[\begin{align*}
X(n) &\xrightarrow{Npt} X(n) \quad \text{periodic} \\
\text{DFS} &\xrightarrow{Npt} \hat{X}(k) \quad \text{Periodic Npt} \\
\end{align*}\]
\[X(k) = N \cdot \text{DFT} \{ x(n) \} = \sum_{n=0}^{N-1} x(n) \cdot e^{-j \frac{2\pi nk}{N}} \quad 0 \leq k < N \]

\[x(n) = \begin{cases} \frac{1}{N} \sum_{k=0}^{N-1} X(k) \cdot e^{j \frac{2\pi nk}{N}} & 0 \leq n < N \\ 0 & \text{otherwise} \end{cases} \]
\[X_k = \begin{cases} \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N} & 0 \leq k < N \\ 0 & \text{otherwise} \end{cases} \]

DFT is equally spaced samples of DTFT.
Given \(\Omega = \frac{2\pi}{K} \) for \(K = 0, 1, 2, 3, 4, 5, 6, 7 \), the \(8 \) pt. DFT. A plot is shown for a 2D plane with a circular axis.
\[X(n) \overset{\text{int}}{\rightarrow} \hat{X}(n) \overset{\text{finite extent}}{\rightarrow} X(k) \]