GENERAL OVERVIEW OF SIGNAL PROCESSING

• Digital vs analog vs discrete time.
• Theoretical vs applied.
• Algorithm development vs implementations.
• Applications:
 1. Telecommunications.
 2. Audio
 3. Speech
 4. Analog to digital conversion
 5. Video
 6. Images
 7. Radar
 8. Sonar
 9. Biomedical
 10. Geophysical
IMAGE PROCESSING

- Image enhancement \rightarrow dynamic range/histogram modifications.

- Image restoration \rightarrow deblurring due to motion or being out of focus.

- Image reconstruction from partial information:
 1. Fourier transform phase.
 2. Fourier transform magnitude.
 3. Projection \rightarrow projection slice theorem.

- Image compression for communications, storage, entertainment, etc. ..
VIDEO SIGNAL PROCESSING

• Implementation: VLSI architectures need to be resolved for real time operation.

• Algorithmic issues → Compression strategies:
 1. What to quantize:
 - Space domain information: pixels.
 - Frequency domain information: DCT or DFT.
 - Predictive coding: DPCM.
 2. How to quantize:
 - Uniform
 - Max - Loyd.
 3. How to allocate bits:
 - Entropy coding.
 - Arithmetic coding.
 - Hoffman coding.

• Motion Estimation:
 - Reduce redundancy → compression.
 - Frame interpolation → rate conversion.
 - Enhancement.
• Present research topics:
 – HDTV.
 – Video conferencing.
 – Compact disc \rightarrow 1.5 Mb/sec.
 – Video communications over digital networks.
SPEECH

• Problems in speech:

1. Analysis and Synthesis.
2. Voiced/unvoiced discrimination, pitch detection.
3. Coding → LPC coding, pole zero modeling.
4. Speech recognition
 – Speaker dependent vs independent.
 – Connected words vs isolated words.
 – Vocabulary size.
 – Extensive training.
 – Error rate
 – Applications of AI for context dependent recognition.
AUDIO

• Problems in audio:
 1. Generation of signals → music synthesis.
 2. Storage and Transmission of signals → tapes, compact disc players.
 3. Restoration of old signals → Caruso’s operas.
 4. Faithful reproduction of signals in the form of acoustic wave → Speaker design.
 5. Adding reverb.
 8. Precise analog to digital converter design → Sigma delta converters.
TELECOMMUNICATION

\[\mathcal{S} \]

- Digital versus analog message source.
- Modulation techniques → AM vs FM vs PM.
- Error Correction Codes:
 - Block Codes.
 - Convolutional Codes.
- Compensation for channel nonidealities:
 - Atmospheric Fading.
 - Distortion → Adaptive equalization.
- Viterbi Decoding:
 - ISI.
 - CPM.
 - Convolutional decoding.
BIOMEDICAL APPLICATION

• Ultra sound.

• Magnetic Resonance Imaging.

• PET.

• X ray Tomography:
 – Projection slice theorem.
 – Application to other tomography problems such as NDE, radar, geophysics.
 – Limited angle tomography.
RADAR

• Principle of operation:
 – Estimate range by measuring time delay → short pulses.
 – Estimate doppler by measuring frequency of the received signal → Continuous wave such as sinuosid.
 – Tradeoff between range and doppler resolution.
 – Time compression waveforms. → matched filtering.

• High resolution Radar Imaging:
 – SAR → Optical Fourier Transform.
 – ISAR.
SONAR

- Similar to radar except for operating frequency and passive mode of operation.
- delay and direction of arrival estimation.
- Adaptive beamforming.
- Adaptive nulling to combat unwanted interference.
GEOPHYSICS

- Applications: Geology, Oil/mineral exploration.
- Signal processing techniques used: DECONVOLUTION: predictive, dynamic homomorphic.
IMPLEMENTATION ISSUES

- Fixed point versus floating point arithmetic.
- Accumulation of round off errors.
- Filter design and implementation: FIR versus IIR.
- Stability and robustness of algorithms.
ANALOG VERSUS DIGITAL

• Analog signal processing can handle up to 8 bits of accuracy.

• Advantages of digital:
 – Robustness with respect to aging and temperature.
 – Added flexibility.

• Which one is more appropriate for what?