Thought Exp

- Correct way: Pad both seq with enough zeros to get \(L + P - 1 \) pt sequence.
 - Multiply DFT of these \(L + P - 1 \) pt seq.
 - Take IDFT of the product.

- Wrony Way
 - Suppose take \(L \) pt DFT of \(x_1 \) and \(x_2 \).
 - Multiply two \(L \) pt DFT
 - Take \(L \) pt IDFT of the product.
Claim: Only the first P points are correct.

The answer obtained via the "wrong way" is really wrong. The rest are good.

First $P-1$ are wrong. Remaining point up to index $L-1$ on Lth output is right.
Wrong Way

L pt

Answer at location 1 is off.

Answer at location 2 is also off.

Correct
Overlap Save

1. Segment sequence into L point chunks, overlapping with each other by P-1 points.

2. L pt circular convolution of each chunk. Multiply L pt DFT of chunk by L pt DFT of X2 \[\rightarrow \] IDFT \[\rightarrow \] L pt.

3. Throw away the first P-1 point of the IDFT in part 2, replace it with answer obtained from previous segment.
Fast Fourier Transform

Decimation in Time

\[X(k) = \sum_{n=0}^{N-1} x(n) e^{-j \frac{2\pi nk}{N}} \]

For each \(k \rightarrow N \) adds

\(N \) value of \(k \rightarrow N^2 \) adds

Direct way of computing DFT.

\(O(N^2) \)
Decimation in time

\[
X(k) = \sum_{n \text{ even}} \sum_{0 \to N-1} x(n) e^{-j\frac{2\pi nk}{N}} + \sum_{n \text{ odd}} \sum_{0 \to N-1} x(n) e^{-j\frac{2\pi nk}{N}}
\]

\[
x(k) = \sum_{r=0}^{N/2-1} x(2r) e^{-j\frac{2\pi kr}{N}} + \sum_{r=0}^{N/2-1} x(2r+1) e^{-j\frac{2\pi (2r+1)k}{N}}
\]

\[
x(k) = \sum_{r=0}^{N/2-1} g(r) e^{-j\frac{2\pi kr}{N/2}} + \sum_{r=0}^{N/2-1} h(r) e^{-j\frac{2\pi k r}{N/2}}
\]

\[
x(k) = \text{N/2 pt DFT of } g(r)
\]

\[
x(k) = \text{N/2 pt DFT of } h(r)
\]
\[G\left(\frac{N}{2} \right) = G(0) \]
\[G\left(\frac{N}{2} + 1 \right) = G(1) \]
\[G\left(\frac{N}{2} + k \right) = G(k) \]
\[X(n) = G(n) + \frac{1}{16} e^{j\frac{2\pi n}{16}} H(n) \]

\[G(n) = G(3), \quad H(n) = H(3) \]
Repeat the above process until I get to a 2 pt DFT.

\[\sum_{n=0}^{1} x(n) e^{-j2\pi nk/2} = x(0)e^{-j\pi k} + x(1)e^{-j\pi k} \]

\[= x(0) + x(1)e^{-j\pi k} \]

\[k = 0 : e^{-j\pi k} = 1 \Rightarrow X(0) = x(0) + x(1) \]

\[k = 1 : e^{-j\pi k} = -1 \Rightarrow X(1) = x(0) - x(1) \]
New Notation

\[W_N^k \triangleq e^{-j2\pi k / N} \]

Twiddle factor.

Use twiddle factor to redraw my basic flow graph for Dec. in Time.

Fig 9.3 of 025.

9.7 of 025.