9.27. Let
y[n] =e" J2xn/627 I[ﬂ.]

Then
Y (&) = X (It

Let ¥'[n] = 3. o ¥[n +256m], 0 < n <255, and let Y’[k] be the 256 point DFT of y’[n]. Then
Y'[k] = X (g(iﬁ+ﬁ))

See problem 9.30 for a more in-depth analysis of this technique.



9.30. (a) Note that we can write the even-indexed values of X[k] as X[2k] for k =0,...,(N/2) — 1. From
the definition of the DFT, we find

N-=1

E z[n] e—er{Zk)n/H

n=0

N/2-1 -

z z[n)e I R/n

'I'I-='-'0'
N/2-1

-+ z z{n + (N/Z)]c-ji”? ykn =3 i (N/2)k

n=0

N/2-1

Y (zin] + zfn + (N/2)))e W~
nz=0

= Y|[k]

X[2k)

I}

Thus, the algorithm produces the desired results.
(b) Taking the M-point DFT Y{k], we find

M-1 o™
Y ) zln+rMlenItrEn/M

Y[k] =

n=_0 r=—o0

oo M-=1

s E Z 3[1'1 d rme—j‘ltk(n+rﬂ}fﬂ cj!t(rl‘)tfﬂ

r -0t n=0

letli=n<+rM. This gwes
m -
YR = Y affesins
i=—c0

= X(cjztkfﬂ)

Thus, the result from Part (a) is a special case of this result if we let M = N/2. In Part (a), there
are only two r terms for which y[n] is nonzero in the rangen = 0,...,(N/2) - 1.

(c) We can write the odd-indexed values of X[k] as X[2k + 1] for ¥ = 0,...,(N/2) — 1. From the
definition of the DFT, we find I

N-1
X[2k+1] = z[n]e—33(2k+1)n/N

n={)

N-1

Z zln]c-j‘zrn/!;' e—j!t(!k)n}.ﬁ

n=0

(N/2)=1 (N/2)-1
Y zlnje P NIwmEY 4§ gin 4 (N/2)]e 2R NN o~ i+ (N/2)
n=0 | n=0

(N/2)=-1
> [(aln) - zin + (V25 ¥n] eI rdmn

n=0

"

Let
glid] e (z[n] — z[n + (N/2)])e-3C@=/Nin 0 <n < (N/2) -1
01 Othmise
Then Y[k] = X[2k + 1]. Thus, The algorithm for computing the odd-indexed DFT values is as
follows. |

step 1: Form the sequence

[n] = (zfn] — z{n + (N/2)])e72"/M)" 0 <n < (N/2) ~ 1
’ 0, otherwise

step 2: Compute the N/2 point DFT of y[n|, yielding the sequence Y|[k].
step 3: The odd-indexed values of X[k] are then X[k]=Y{(k-1)/2},k=1,3,..., N-L



9.31. (a) Since z{n] is real, z[n] = z*[n], and X[k] is conjugate symmetric.
N-1 |

Z z*[n]e™ ¥in

n=0

N-1 "
(Z :[n]cjﬂ-knc—jﬁﬂn)
n=0
= X°[N-K

X k]

Hence, Xglk] = Xr[N - k| and X;[k] = = X;[N — k].

(b) In Part (a) it was shown that the DFT of a real sequence z[n] consists of a real part that has even
symmetry, and an imaginary part that bas odd symmetry. We use this fact in the DFT of the

sequence g{n] below.
G[k] = X;[k] e sz[k]
(X1er([k} + j X101[k]) + §(Xa2Er[K] + § X201 [K])
X1erlkl — Xao1lk) +37 (X101lk] + Xagr{k])
real part imaginary part

In these expressions, the subscripts "E” and O™ denote even and odd symmetry, respectively, and
the subscripts "R” and "I” denote real and imaginary parts, respectively.

|

il



Therefore, the even and real part of Gik| is

Gerlk] = X1erlk]

the odd and real part of G[k] is
Gorlk] = —~ X301k

the even and imaginary part of G[k] is
Geilk] = X2prik]
and the odd and imaginary part of G[k] is
Goilk} = X101(k]
Having established these relationships, it is easy to come up with expressions for X;{k] and X, [k].-

Xilk] = Xierlk]l +3iXi01[k]
Gerlk] + jGorik]
X2£r(k] + 7 X201[X]
Gertk] — jGorlk]

I

i

X2[k]

(c) An N = 2¥ point FFT requires (N/2) log, N complex multiplications and N log, N complex addi-
tions. This is equivalent to 2N log, N real multiplications and 3N log, N real additions.
(i) The two N-point FFTs, X;[k] and X,[k], require a total of 4N log, N real multiplications and
6N log, N real additions.

(i) Computing the N-point FFT, G{k], requires 2N log, N real multiplications and 3N log, N real
additions. Then, the computation of Ggrlk], Gg1lk]l, Golk], and Gor[k] from G[k] requires
approximately 4N real multiplications and 4N real additions. Then, the formation of X, [k] and
Xz[k) from Ggrlk], Gerlk], Go:lk], and Gor[k] requires no real additions or multiplications.
So this technique requires a total of approximately 2N log, N + 4N real multiplications and
3N log, N + 4N real additions.

(d) Starting with
N-1
X[k] . z z[n]c_jzlkﬂfﬂ
nd)
and separating z{n] into its even and odd numbered parts, we get
X[k} = Z z[n]e~32kn/N o z z[n]e-i2kn/N

1 even n odd

Substituting n = 2£ for n even, and n = 2{ + 1 for n odd, gives

(N/2)-1 (N/2)-1
X[kl = Z z[24)e—I27RL/(N/2) 4 E {2 + 1]e~72k(2t+1)/N
=0 ¢=0
(N/2)-1 (N/2)=1
= E z[2f)e 2Kt/ (N/2) 4 o=i2xk/N 2 2[20 + 1)~ I2x/(N/2)
=0 =0
- X [k] + e=727%/N X, [k], 0<k< %
Xi[k — (N/2)] — e~ /N X0k - (N/2)}, £ <k<N

(¢) The algorithm is then



step 1: Form the sequence g[n] = z[2n] + jz[2n + 1], which has length N/2.
step 2: Compute G[k], the N/2 point DFT of g[n].
step 3: Separate G[k] into the four parts, for k=1,...,(N/2) -1

Gorlk] = %(Gnlk]-Gn[(le)-‘k])

Gsalll = 3(GlK+Gl(N/2) - k)
Gorlk] = 3(Gilk] - GH(N/2) - k]
Geilk] = 3(Gilkl+Gil(N/2) - K]
which each have length N/2.
step 4: Form
Xk = Gealkl+jGorl¥]

X)'[k] = e I*/N(Gg,lk] - iGorlk))

which each have length N/2.
step 5: Then, form

Xik] = X, [k] + X2'[¥], 0<k<—

step 6: Finally, form

X[kl = X"[N-k, %SJH:N

Adding up the computational requirements for each step of the algorithm gives (approximately)
step 1: 0 real multiplications and 0 real additions.

step 2: 2% log, & real multiplications and 3% log, £ real additions.

step 3: 2N real multiplications and 2/N real additions.

step 4: 2N real multiplications and N real additions.

step 5: 0 real multiplications and N real additions.

step 6: 0 real multiplications and 0 real additions.

In total, approximately N log, % + 4N real multiphications and %N log, % + 4N real additions are
required by this technique.

The number of real multiplications and real additions required if X {k] is computed using one N-

point FFT computation with the imaginary part set to zero is 2N log, N real multiplications and
3N log, N real additions.



9.32. (a) The length of the sequenceis L+ P - 1.

(b) In evaluating y{n] using the convolution sum, each nonzero value of k[n] is multiplied once with

every nonzero value of z{n]. This can be seen graphically using the flip and slide view of convolution.
The total number of real multiplies is therefore LP.

(c) To compute y[n] = h[n] » z[n] using the DFT, we use the procedure described below.
step 1: Compute N point DFTs of z{n] and A[n).
step 2: Multiply them together to get Y{k] = H[k])X{k].
step 3: Compute the inverse DFT to get yn].

Since y[n] has length L + P — 1, N must be greater than or equal to L + P — 1 so the circular
convolution implied by step 2 is equivalent to linear convolution.

volutian.nf z[n] and h[n] and the linear con-

(d) For these signals, N is large enough so that cirbia? S9NF P 0 ey of complex multiplications

volution of z{n] and A[n] produce the same result. Coun
for the procedure in part (b} we get

DFT of z[n] (N/2)log N

DFT of h[n] (N/2)log: N

Y{k] = X[k}H[K] N

Inverse DFT of Y[k] (N/2) log, N _
’ (3N/2)loga N + N

complex multiplication we see that the procedure

Since there are 4 real multiplications for every - cwer from part (a), we see that the direct

iplicatl ing the
takes 6N log, N + 4N real multiplications. Usu.tg the
method requires (N/2)(N/2) = N? /4 real multiplications. -
The following table shows that the smaﬂest N = 2* for which the
multiplications than the direct method is 256.

FFT method requires fewer

Direct Method | FFT method

K2 I

4 4 o .
8 16 176
16 64 | 448
32 | 256 1088




4.42. (a) The Nyquist criterion states that z(t) can be recovered as Jong as

2x 1
L <'_“
3 22::2:‘(250):'[_5@

In this case, T = 1/500, so the Nyquist criterion is satisfied, and z.(f) can be recovered.

(b) Yes. A delay in time does not change the bandwidth of the signal. Hence, y.(t) has the same
bandwidth and same Nyquist sampling rate as z.(t).

(c) Consider first the following expressions for X (¢’*) and Y (e?“):

X(E) = 2Xl) louy = 555 Xc5000)
V() =AYl luy = 3¢ OXGD) loay
- %e-iﬂﬂx,um)
= e~ /2X(e)

Hence, we let

or | 27, jwl <
i b { 0, otheréise

Then, in the following figure,
R(e*) = X(&*)

W(&) _ { :f-ij(eﬂﬂ), Io‘:llxﬁg

Y(e¥) = e w/i)X(e)

o Jal el v )

(d) Yes, from our analysis above,

Ha(ev) = e~ 7v/3



4.46. (a) Notice that

win] = z[3n]

# [ﬂ] = 3[311 + 1]

winl = z{3n + 2],
and therefore, =3k

wl(n — 2)/3], n= 3k + 2

(b) Yes. Since the bandwidth of the flters are 2x/3, there is no ahasmg introduced by downsampling.
Hence to reconstruct z[n], we need the system shown in the following figure:

vo[r/3),
z{n] =<{ wmln- 1)/3], n=3k+1

(c) Yes, z[n] can be reconstructed from y3[n] and y¢(n] as danonstnted by the following bgure:

y, {n v, [n] -~ X0}
yin v, (n]
Tl

In the following discussion, let z.{n] denote the even samples of z[n], and z,[n] denote the odd
samples of z{n|:

z:[ﬂ] = { ;En]’ :z:;n
0, n even
Zoln] = { z{n), n:dd

In the figure, y3[n] = z[2n], and bence,

o = { & noad
= =z

Furthermore, it can be verified using the IDFT that the impulse response hg|n] corresponding to
He(e?¥) is

_ { -2/(jmxn), nodd
hyln] = { 0, otherwise

Notice in particular that every otuer sample of the impulse response hy{n] is 2ero. Also, from the
form of Hy(e?*), it is clear that H((e’“)H(e’*) = 1. and hence hq[n] * Asin] = 8(n}.
Therefore,

vein] { ya{n/2], neven

0, n odd

wy[n), n even
0, n odd

_ { (z » hy)[n}, n even
0, n odd

H

= Z,[n]=* hy[n]

where the last equality follows from the fact that hy[n] is non-zero only in the odd samples.
Now, s{n] = ve[n]s he[n) = zo[n]* hyln] * Agfn] = z.Inl. and since z{n] = z.[n] +z,[n}, s[n] + vs[n] =
z[n].



