7.25. (a) Answer: Only the bilinear transform design will guarantee that a minimum phase discrete-time
filter is created from a minimum phase continuous-time filter. For the following explanations
remember that a discrete-time minimum phase system bas all its poles and zeros inside the
unit circle.

Impulse Invariance: Impulse invariance maps left-half s-plane poles to the interior of the z-plane
unit circle. However, left-half s-plane zeros will not necessarily be mapped inside the z-plane
unit circle. Consider:
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If we define Poly,(z) = I]’,"L, (1 —-c'iT‘z"), we can note that all the roots of Poly,(z) are
jk

inside the umit circle. Since the numerator of H (2) is a sum of A,Poly,(z) terms, we see
that there are no guarantees that the roots of the numerator polynomial are inside the unit
circle. In other words, the sum of minimum phase filters is not necessarily minimum phase.
By considering the specific example of
s+ 10
(s+1)(s+2)
and using T = 1, we can show that a minimum phase filter is transformed into a non-minimum
phase discrete time filter.
Bilinear Transform: The bilinear transform maps a pole or zero at s = so to a pole or zero

(respectively) at z, = :: :: Thus,

H.(s) =

Since H.(s) is minimum phase, all the poles of H,(s) are located in the Jeft half of the s-plane.
Therefore, a pole sy = ¢ + jQ must have ¢ < 0. Using the relation for s, we get
(1+Zo)2+(Zq)p
(- LoF + S0y
< 1
Thus, all poles and zeros will be inside the z-plane unit circle and the discrete-time filter will
be minimum phase as well.
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{b) Answer: QOuly the bilinear transform design will result in an allpass filter.
Impulse Invariance: In the impuise invariance design we have
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The aliasing terms can destroy the allpass nature of the continuous-time filter.

Bilinear Transform: The bilinear transform only warps the irequency axis. The magnitude
response is not affected. Therefore, an allpass filter will map to an allpass filter.

(¢) Answer: Only the bilinear transform will guarantee
H(e)|u=0 = Hc(1D)l0=0

Impulse Invariance: Since impulse invariance may result in aliasing, we see that
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which is generally not the case.
Bilinear Transform: Since, under the bilinear transformation, ! = 0 maps tow =0,

H(e°) = Hc(40)
for all H.(s).

(d) Answer: Only the bilinear transform design is guaranteed to create a bandstop filter from a

bandstop filter.
If H.(s) is a bandstop filter, the bilinear transform will preserve this because it just warps the

frequency axis; however aliasing (in the impulse invariance technique) can fill in the stop band.
(e) Answer: The property holds under the bilinear transform, but not under impulse invariance.
Impulse Invariance: Impulse invariance may result in aliasing. Since the order of aliasing and
multiplication are not interchangeable, the desired identity does not hold. Consider H,, (s) =
H,,(s) = =T,
Bilinear Transform: By the bilinear transform,

ae) = A (5 (55))

2 f1-2z"1} 2 f1-2z"}
= H (ﬁ (1+z-')) He, (E (1+,-1))

= H(z)H:(2)



(f) Answer: The property holds for both impulse invariance and the bilinear transform.
Impulse Invariance:

we + £ n(53)
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= ..Y:,,H" ( (T + %k)) + k;mﬂa (j (% + %k))
= Hy(e™)+ Ha(e™)

Bilinear Transform:
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= Hy(z) + Ha(2)

(g) Answer: Only the bilinear transform will result in the desired relationship.
Impulse Invariance: By impulse invariance,

ne = £ b(30%)
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We can clearly see that due to the aliasing, the phase relationship is not guaranteed to be
maintained.
Bilinear Transform: By the bilinear transform,
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therefore,
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7.28. (a) We have
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(d)
Hy(z) = Hi(z)|z=-z

The even powers of z do not get changed by this transformation, while the coefficients of the odd
powcrs of z change sign.
Thus, replace A,C,2 with —4,-C, -2.



7.30. We are given *
H(z) = H.(s) I-=.9[3"_']

14:—®

where a is a nonzero integer and [ is a real number.

(a) It is true for § > 0.

Proof:
1-2z"¢
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s+s27% = B-pz~°

5—-8 = —fz7%-3z"°
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2* = B—s

The poles s; of a stable, causal, continuous-time filter satisfy the condition Re {5} < 0. We want
thﬁel poles to map to the points z; in the z-plane such that {ze| < 1. With a > 0 it is also true
that if |zx| < 1 then |zf| < 1. Letting s; = 0 + jw we see that

2] < 1
lzf] < 1
B+0+i0 < |f-o-j)
B+o)+0? < (B-0)2+0?
208 < =208
But since the continuous-time flter is stable we have Re{sx} <0or o <0. That leads to

-p<8
This can only be true if § > 0.

(b) It is true for B < 0. The proof is similar to the last proof except now we have [29] > 1.
(c) We have
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Hence, the jQ axis of the s-plane is mapped to the unit circle of z-plane.

(d) First, find the mapping between 2 and w.
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w = tan~}(N)
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Therefore,
- T 3
1-6 <|H(E*) <146, {Ms;}u{_;auuc,.}

Note that the highpass region 37 /4 < |w| < = is included because tan(w) is periodic with period
.



6.33.
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so set b=0.54, c = -1.852, and d = —0.54.

(b) With quantized coefficients b, &, and d, & # 1 and d # —b in general, o the resulting system would
not be allpass.

(c)

2[n) yln]
i

«]

(d) Yes, since there is only one “0.54” to quantize.

(e)
10 = (555) (552)

Cascading two sections like (c) gives
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The first delay in the second section has output win — 1] so we can combine with the second delay
of the first section.
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(f) Yes, same reason as part (d).
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