Digital Signal Processing

Midterm 2 Solutions

Instructions

• Total time allowed for the exam is 80 minutes
• Please write your name and SID on every page of the exam
• Some useful formulas:
 – N point Discrete Fourier Transform (DFT)
 \[X[k] = \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi kn}{N}} \]
 – Inverse Discrete Fourier Transform (IDFT)
 \[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi nk}{N}} \]
1. (40 points) Let $H(e^{j\omega})$ be the frequency response of a discrete time LTI filter. The filter is arranged in the following cascade combination given below:

```
| 2 | H(e^j\omega) | 2 |
```

a. (10 pts) Is the system given in the above figure linear? Justify your answer by giving a brief proof or a counterexample.

Solution: Since each of the individual blocks in the above cascade configuration are linear, the whole system is also linear.

b. (10 pts) Is the system given in the above figure time-invariant? Justify your answer by giving a brief proof or a counterexample.

Solution: Let $x[n]$ denote the input to the system, $w[n]$ the output after upconversion, $g[n]$ the output after passing through the filter $H(e^{j\omega n})$ and $y[n]$ denote the overall output of the cascade system. Also, let $h[n]$ be the impulse response of the filter. We already know that the system is linear. So, we only need to verify time-invariance when the input to the system is a delta function.

Let $x[n] = \delta[n]$. Then, $w[n] = \delta[n]$ and $g[n] = h[n]$. Therefore, $y[n] = h[2n]$. Now, let the input to the system be a time-shifted delta function, i.e., $\tilde{x}[n] = \delta[n - n_0]$. Then,

$$\tilde{w}[n] = \begin{cases} 1 & \text{if } n = 2n_0 \\ 0 & \text{otherwise} \end{cases}$$

$$\tilde{w}[n] = \delta[n - 2n_0]$$

This implies that $\tilde{g}[n] = \tilde{h}[n - 2n_0]$. Finally,

$$\tilde{y}[n] = \tilde{g}[2n]$$

$$= \tilde{h}[2n - 2n_0]$$

$$= \tilde{h}[2(n - n_0)]$$

$$= y[n - n_0]$$

This proves that the system is time-invariant.
Now consider the following alternate cascade formation:

\[\downarrow 2 \quad H(e^{j\omega}) \quad \uparrow 2 \]

\[\text{c. (10 pts)} \quad \text{Is the system given in the above figure linear? Justify your answer by giving a brief proof or a counterexample.} \]

\[\text{Solution: Since each of the individual blocks in the above cascade configuration are linear, the whole system is also linear.} \]

\[\text{d. (10 pts)} \quad \text{Is the system given in the above figure time-invariant? Justify your answer by giving a brief proof or a counterexample.} \]

\[\text{Solution: Let } x[n] \text{ denote the input to the system, } w[n] \text{ the output after decimation, } g[n] \text{ the output after passing through the filter } H(e^{j\omega n}) \text{ and } y[n] \text{ denote the overall output of the cascade system. Also, let } h[n] \text{ be the impulse response of the filter.} \]

\[\text{We already know that the system is linear. So, we only need to verify time-invariance when the input to the system is a delta function.} \]

\[\text{Let } x[n] = \delta[n]. \text{ Then, } w[n] = \delta[n] \text{ and } g[n] = h[n]. \text{ Therefore,} \]

\[y[n] = \begin{cases}
 h[n/2] & \text{if } n \text{ is even} \\
 0 & \text{if } n \text{ is odd}
\end{cases} \]

\[\text{Now, let the input to the system be a time-shifted delta function, i.e., } \tilde{x}[n] = \delta[n-1]. \text{ Then, the output after decimation is given by } \tilde{w}[n] = 0. \text{ Hence, } \tilde{g}[n] = 0 \text{ and } \tilde{y}[n] = 0. \]

\[\text{Since, } \tilde{y}[n] \neq y[n-1] \text{ the system is not time-invariant.} \]
2. (80 points) Let $x[n]$ be a given time sequence. Assume that the length of the sequence is $M = 3^n$. The goal is to compute its M point DFT coefficients $X[k]$’s.

a. (10 pts) Find the total number of complex multiplications and additions required to compute $X[k]$’s directly from the definition of the DFT.

Solution: From the definition of the DFT,

$$X[k] = \sum_{n=0}^{M-1} x[n]W_M^{nk}, \quad k = 0, 1, \cdots, M - 1$$

To compute $X[k]$ for a single k, we need

- $M - 1$ complex additions
- M complex multiplications

Therefore, to compute the M point DFT of $x[n]$ we need a total of

- $M(M - 1)$ complex additions
- M^2 complex multiplications
b. (20 pts) Describe in detail a fast algorithm to compute the DFT of $x[n]$.

Hint: Think of a recursive algorithm similar to the decimation in time FFT algorithm.

Solution: From the definition of the DFT,

$$X[k] = \sum_{n=0}^{M-1} x[n]W_M^{nk}$$

$$= \sum_{n=0 \mod 3} x[n]W_M^{nk} + \sum_{n=1 \mod 3} x[n]W_M^{nk} + \sum_{n=2 \mod 3} x[n]W_M^{nk}$$

$$= \sum_{r=0}^{M/3-1} x[3r]W_M^{3rk} + \sum_{r=0}^{M/3-1} x[3r+1]W_M^{(3r+1)k} + \sum_{r=0}^{M/3-1} x[3r+2]W_M^{(3r+2)k}$$

$$= \sum_{r=0}^{M/3-1} x[3r]W_M^{rk} + \sum_{r=0}^{M/3-1} x[3r+1]W_M^{rk} + \sum_{r=0}^{M/3-1} x[3r+2]W_M^{rk}$$

$$= G[k] + W_M^k H[k] + W_M^{2k} L[k] \quad (1)$$

Where $G[k]$, $H[k]$ and $L[k]$ are the $M/3$ point DFT coefficients corresponding to the sequences $x[3r]$, $x[3r+1]$ and $x[3r+2]$ respectively. Therefore, the problem of computing a M point DFT has been reduced into computing three $M/3$ point DFTs and combining them according to Eqn. (1). This process can be repeated recursively until a stage where you need to compute 3 point DFTs.
c. (10 pts) Find the total number of complex multiplications and additions required to compute $X[k]$'s using the algorithm from part (b).

Solution: From Eqn. (1), it is clear that we need $2M$ complex multiplications and $2M$ complex additions for computing $X[k]$ given the $G[k], H[k]$ and $L[k]$ for $k = 0, 1, \cdots, M - 1$. The number of such recursive stages in the algorithm is $\log_3 M$. Therefore, the algorithm in part (b) requires a total of

- $2M \log_3 M$ complex multiplications
- $2M \log_3 M$ complex additions
d. (20 pts) Now assume that the length of the sequence $x[n]$ is $M = 2^{\nu_1}3^{\nu_2}$. For this case, describe a fast algorithm to compute the DFT. Also, find the total number of complex multiplications and additions required under this algorithm.

Solution: There are several possible fast algorithms to compute the DFT of a sequence of length $M = 2^{\nu_1}3^{\nu_2}$. We give one possible such algorithm. One can easily modify this algorithm to come up with similar algorithms having the same computational complexity.

Algorithm:

- Use the radix-2 ‘decimation in time’ FFT algorithm discussed in class to write
 \[X[k] = G[k] + W_M^k H[k] \quad k = 0, 1, \ldots, M - 1 \]
 where $G[k]$ and $H[k]$ are the DFT coefficients of two $M/2 = 2^{\nu_1-1}3^{\nu_2}$ point sequences, $x[2r]$ and $x[2r+1]$ respectively. So, we have reduced the problem of computing a M point DFT into the problem of computing two $M/2$ point DFTs by partitioning the original sequence.

- ‘Step 1’ can be repeated recursively as long as the partitioned sequences have lengths divisible by two. So, the radix-2 decimation in time recursion will continue until the partitioned sequences are each of length 3^{ν_2}.

- At this stage, we have represented the DFT coefficients $X[k]$’s in terms of DFT coefficients of sequences of length 3^{ν_2}. The number of such sequences are 2^{ν_1}.

- Finally, to complete the algorithm we need to compute the DFT coefficients of 3^{ν_2} point sequences. This can be done by applying the algorithm in part (b) for each of these sequences.

Computational Complexity of the Algorithm:

Our algorithm has two distinct phases. First we divide using the radix-2 decimation in time algorithm, then we divide using the radix-3 decimation in time algorithm from part (b). We compute the number of computations required for each of the two phases separately and add them up to give the total number of computations.

We have ν_1 radix-2 decimation in time stages. This requires

- $M\nu_1$ complex multiplications
- $M\nu_1$ complex additions

After the radix-2 decimation in time stages, we need to compute the DFT of 3^{ν_2} point sequences. The number of such sequences is 2^{ν_1}.

From part (c) of the question, we know that to compute the DFT of a 3^{ν_2} point sequence we need

- $2 \cdot 3^{\nu_2}\nu_2$ complex multiplications
- $2 \cdot 3^{\nu_2}\nu_2$ complex additions

Since there are a total of 2^{ν_1} such sequence, we need

- $2^{\nu_1}(2 \cdot 3^{\nu_2}\nu_2) = 2M\nu_2$ complex multiplications
- $2^{\nu_1}(2 \cdot 3^{\nu_2}\nu_2) = 2M\nu_2$ complex additions
Therefore, the total number of computations needed are

- \(M\nu_1 + 2M\nu_2 = M(\nu_1 + 2\nu_2) \) complex multiplications
- \(M\nu_1 + 2M\nu_2 = M(\nu_1 + 2\nu_2) \) complex additions
Let $x[n]$ and $y[n]$ be two $M = 3^\nu$ point sequences. The goal is to compute the linear convolution of $x[n]$ and $y[n]$, i.e., $z[n] = x[n] * y[n]$.

e. (10 pts) Find the total number of complex multiplications and additions required to compute $z[n]$ using the DFT algorithm in part (b).

Solution: $z[n] = x[n] * y[n]$. Since both $x[n]$ and $y[n]$ are M point sequences, the length of the sequence $z[n]$ is at most $2M - 1$. Let $N \geq (2M - 1)$. To compute $z[n]$ we need to perform the following operations

1. Compute the N point DFT $X[k]$ and $Y[k]$.
2. Compute the product $Z[k] = X[k] \cdot Y[k]$.
3. Compute the IDFT of $Z[k]$, whose output will give us $z[n]$.

Now, in order to use the algorithm in part (b) to compute the DFT and IDFT (in steps 1 and 3) we must choose N to be the smallest power of three greater than $(2M - 1)$. Since $M = 3^\nu$, the smallest power of three greater than $(2 \cdot 3^\nu - 1)$ is $3^{\nu+1}$. Hence, we choose $N = 3^{\nu+1}$

The computational complexity is given by

- **Step 1:** To compute two N point DFTs we need
 - $4N \log_3 N$ complex multiplications
 - $4N \log_3 N$ complex additions

- **Step 2:** To compute the product of $X[k]$ and $Y[k]$ we need
 - N complex multiplications

- **Step 3:** To compute an N point IDFT we need
 - $2N \log_3 N$ complex multiplications
 - $2N \log_3 N$ complex additions

Therefore, to compute $z[n]$ using the DFT algorithm in part (b) we need a total of

- $6N \log_3 N + N$ complex multiplications
- $2N \log_3 N$ complex additions
f. (10 pts) Find the total number of complex multiplications and additions required to compute \(z[n] \) using the FFT algorithm discussed in class, i.e., the FFT algorithm for powers of two. **Hint:** The question asks for a linear convolution, which is different from a circular convolution.

Solution: \(z[n] = x[n] \ast y[n] \). Since both \(x[n] \) and \(y[n] \) are \(M \) point sequences, the length of the sequence \(z[n] \) is at most \(2M - 1 \). Let \(N \geq (2M - 1) \). To compute \(z[n] \) we need to perform the following operations

1. Compute the \(N \) point DFT \(X[k] \) and \(Y[k] \).
2. Compute the product \(Z[k] = X[k] \cdot Y[k] \).
3. Compute the IDFT of \(Z[k] \), whose output will give us \(z[n] \).

In this question we are specifically asked to use the radix-2 FFT algorithm discussed in class to compute the DFT and IDFT in steps 1 and 3. So, we must choose \(N \) to be the smallest power of two greater than \((2M - 1)\), i.e., \(N = 2^\beta \), where \(\beta \) is the smallest number such that \(2^\beta \geq (2 \cdot 3^\nu - 1) \).

In this case, the computational complexity is given by

- **Step 1:** To compute two \(N \) point DFTs using the radix-2 FFT algorithm, we need
 - \(2N \log_3 N \) complex multiplications
 - \(2N \log_3 N \) complex additions

- **Step 2:** To compute the product of \(X[k] \) and \(Y[k] \) we need
 - \(N \) complex multiplications

- **Step 3:** To compute an \(N \) point IDFT using the radix-2 IFFT algorithm, we need
 - \(N \log_3 N \) complex multiplications
 - \(N \log_3 N \) complex additions

Therefore, to compute \(z[n] \) using the radix-2 FFT algorithm we need a total of

- \(2N \log_3 N + N \) complex multiplications
- \(2N \log_3 N \) complex additions
3. (40 points) Let $h[n]$ be the impulse response of a LTI filter. Assume that $h[n] = 0$ for $n < 0$ and $n \geq L$. Let $d[n]$ be an N ($N > L$) point data sequence, i.e., $d[n] = 0$ for $n < 0$ and $n \geq N$. Denote this sequence by the vector

$$d = [d[0], d[1], \ldots, d[N-1]]$$

Create a sequence $x[n]$ by adding a $L-1$ point cyclic prefix to $d[n]$. This can be represented by the following vector

$$x = [d[N-L+1], d[N-L+2], \ldots, d[N-1], d[0], d[1], \ldots, d[N-1]]$$

Let $w[n]$ denote the output of the filter when the input is $x[n]$. We ignore the first $L-1$ symbols of the output sequence $w[n]$ and collect the next N symbols. Let $y[n]$ denote this output of length N, which can be represented as

$$y = [w[L], w[L+1], \ldots, w[N+L-1]]$$

Figure 1: Overall system

a. (10 pts) Compute the sequence $y[n]$ as a function of $d[n]$ and the filter impulse response $h[n]$.

Solution: From Fig. 3, we have

$$w[n] = x[n] * h[n]$$

$$= \sum_{l=0}^{L-1} h[l] x[n-l], \quad n = 1, 2, \ldots, N + L - 1$$

$$\Rightarrow y[n] = \sum_{l=0}^{L-1} h[l] x[n-l], \quad n = L, 2, \ldots, N + L - 1$$

$$= \sum_{l=0}^{L-1} h[l] d[=((n - L - l))_N]$$

$$\Rightarrow y[n] = h[n] \otimes_N d[n]$$

Here $h[n]$ is zero-padded so as to make the length of the sequence N, that is, $h[n] = [h[0], h[1], \ldots, h[L-1], 0, 0, \ldots, 0]$.
b. (10 pts) Let $Y[k], k = 0, 1, \ldots, N - 1$ denote the N point DFT of the sequence $y[n]$. Determine the sequence $Y[k]$ as a function of $H[k]$ and $D[k]$, the N point DFTs of $h[n]$ and $d[n]$ respectively (See Fig. 1).

Solution: From part (a) of the question we know that

$$y[n] = d[n] \ast_N h[n]$$

i.e., the N point circular convolution of $d[n]$ and $h[n]$. Taking the DFT on both sides of the above equation, we have

$$Y[k] = D[k] \cdot H[k], \quad k = 0, 1, \ldots, N - 1$$
c. (20 pts) Let N be a multiple of L, i.e., $N = mL$ for some integer $m > 0$. Suppose that the DFT coefficients $D[mk], k = 0, 1, \cdots, L - 1$ are known to be equal to 1. In this case can you recover the filter coefficients $h[n]$ from the $y[n]$ sequence. How would you do so?

Solution: From part (b) of the question, we know that

$$Y[k] = D[k] \cdot H[k], \quad k = 0, 1, \cdots, mL - 1$$

Since $D[mk] = 1$, for $k = 0, 1, \cdots, L - 1$, we have

$$Y[mk] = H[mk], \quad k = 0, 1, \cdots, L - 1$$

By the definition of the DFT,

$$Y[mk] = H[mk] = H(e^{j\omega})|_{\omega = \frac{2\pi mk}{mL}}$$

$$= H(e^{j\omega})|_{\omega = \frac{2\pi mk}{mL}}$$

$$= H(e^{j\omega})|_{\omega = \frac{2\pi k}{L}} \quad k = 0, 1, \cdots, L - 1$$

$$= L \text{ point DFT of } h[n]$$

Note, that the last equality is true only because $h[n]$ is an L point sequence. Finally, in order to recover the filter coefficients $h[n]$ we just need to take the IDFT of the sequence $Y[mk], k = 0, 1, \cdots, L - 1$.