Last Time

- Started with STFT
- Heisenberg Boxes
- Continue and move to wavelets
- Ham -- Get me the forms!

DFT

\[X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N} \]

- \(\Delta \omega = \frac{2\pi}{N} \)
- \(\Delta t = N \)
- \(\Delta \omega \cdot \Delta t = 2\pi \)

one DFT coefficient

Discrete STFT

\[X[r, k] = \sum_{m=0}^{L-1} x[rR + m]w[m] e^{-j2\pi km/N} \]

- \(\Delta \omega = \frac{2\pi}{L} \)
- \(\Delta t = L \)

one STFT coefficient
Limitations of Discrete STFT

- Need overlapping \Rightarrow Not orthogonal
- Computationally intensive $O(MN \log N)$
- Same size Heisenberg boxes

From STFT to Wavelets

- Basic Idea:
 - low-freq changes slowly - fast tracking unimportant
 - Fast tracking of high-freq is important in many apps.
 - Must adapt Heisenberg box to frequency

- Back to continuous time for a bit.....

From STFT to Wavelets

- Continuous time

\[
S_f(u, \Omega) = \int_{-\infty}^{\infty} f(t)w(t-u)e^{-j\Omega t}dt
\]

\[
W_f(u, s) = \int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{s}} \Psi^*(\frac{t-u}{s})dt
\]

*Morlet - Grossmann

The function Ψ is called a mother wavelet
- Must satisfy:
 \[
 \int_{-\infty}^{\infty} |\Psi(t)|^2 dt = 1 \quad \Rightarrow \text{unit norm}
 \]
 \[
 \int_{-\infty}^{\infty} \Psi(t) dt = 0 \quad \Rightarrow \text{Band-Pass}
 \]
STFT and Wavelets “Atoms”

STFT Atoms
(with hamming window)

\[w(t - u)e^{j\Omega u} \]

\[\Omega_{hi} \]

\[\Omega_{lo} \]

Wavelet Atoms

\[\frac{1}{\sqrt{s}} \Psi\left(\frac{t - u}{s}\right) \]

\[s = 1 \]

\[s = 3 \]

Examples of Wavelets

- **Mexican Hat**

\[\Psi(t) = (1 - t^2)e^{-t^2/2} \]

- **Haar**

\[\Psi(t) = \begin{cases}
-1 & 0 \leq t < \frac{1}{2} \\
1 & \frac{1}{2} \leq t < 1 \\
0 & \text{otherwise}
\end{cases} \]

Example: Wavelet of Chirp

Wavelets VS STFT
Example 2: “Bumpy” Signal

\begin{align*}
\log(s) & \quad \text{SombreroWavelet} \\
u & \quad \text{SombreroWavelet}
\end{align*}

Wavelets Transform

- Can be written as linear filtering

\[
Wf(u, s) = \frac{1}{\sqrt{s}} \int_{-\infty}^{\infty} f(t) \Psi^* \left(\frac{t - u}{s} \right) dt
\]

\[
= \{ f(t) \ast \overline{\Psi}_s(t) \}(u)
\]

\[
\overline{\Psi}_s = \frac{1}{\sqrt{s}} \Psi \left(\frac{t}{s} \right)
\]

- Wavelet coefficients are a result of bandpass filtering

Wavelet Transform

- Many different constructions for different signals
 - Haar good for piece-wise constant signals
 - Battle-Lemarie': Spline polynomials

- Can construct Orthogonal wavelets
 - For example: dyadic Haar is orthonormal

\[
\overline{\Psi}_{i,n}(t) = \frac{1}{\sqrt{2^i}} \Psi \left(\frac{t - 2^i n}{2^i} \right)
\]

\[i = [1, 2, 3, \ldots]\]

Orthonormal Haar

- Same scale non-overlapping
- Orthogonal between scales
Scaling function

\[\overline{\Psi}_{i,n}(t) = \frac{1}{\sqrt{2^i}} \Psi\left(\frac{t - 2^i n}{2^i}\right) \]

- Problem:
 - Every stretch only covers half remaining bandwidth
 - Need Infinite functions

Recall, for chirp:

- Solution:
 - Plug low-pass spectrum with a scaling function \(\overline{\Phi} \)

Haar Scaling function

\[\Psi(t) = \begin{cases}
-1 & 0 \leq t < \frac{1}{2} \\
1 & \frac{1}{2} \leq t < 1 \\
0 & \text{otherwise}
\end{cases} \]

\[\Phi(t) = \begin{cases}
1 & 0 \leq t < 1 \\
0 & \text{otherwise}
\end{cases} \]

Back to Discrete

- Early 80’s, theoretical work by Morlett, Grossman and Meyer (math, geophysics)
- Late 80’s link to DSP by Daubechies and Mallat.

- From CWT to DWT not so trivial!
- Must take care to maintain properties
Discrete Wavelet Transform

\[d_{s,u} = \sum_{n=0}^{N-1} x[n] \psi_{s,u}[n] \]

\[a_{s,u} = \sum_{n=0}^{N-1} x[n] \phi_{s,u}[n] \]

Example: Discrete Haar Wavelet

Haar for n=2

Equivalent to DFT_2!

Discrete Orthogonal Haar Wavelet

Haar for n=8
Fast DWT with Filter Banks

$h_0[n]$ $h_1[n]$ $h_0[n]$ $h_1[n]$

$x[n]$ $h_0[n]$ a_{0n}? d_{0n}?

not quite... too many coefficients

complexity:
$N + N/2 + N/4 + N/8 + ... + \frac{N}{2^k} = 2N$
$= O(N)$
Reconstruction

Just flip arrows, replace h with g

Approximation from 25/256 coefficients

Example: Denoising Noisy Signals
Example: Denoising by Thresholding

- Noisy
- Denoised, largest 25 coefficients

Compression - JPEG2000 vs JPEG

- Jpeg2000 - Wavelet
- Jpeg - DCT

@ 66 fold compression ratio
Approximation/Compression

0.000% coefficients
Example in Research

Robust 4D Flow Denoising using Divergence-free Wavelet Transform

Frank Ong1, Martin Uecker1, Umar Tariq2, Albert Hsiao2, Marcus T Alley2, Shreyas S Vasanawala2, Michael Lustig1

1 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California.
2 Department of Radiology, Stanford University, Stanford, California.

Running head: 4D Flow Denoising with Divergence-free Wavelet Transform

Address correspondence to:
Michael Lustig
506 Cory Hall
University of California, Berkeley
Berkeley, CA 94720
TEL: (510) 643-9338
E-MAIL: mlustig@eecs.berkeley.edu

Presented in part at the 21st annual meeting of ISMRM, Salt Lake City, Utah, 2013, the annual meeting of ISBI, San Francisco, California, 2013 and the annual meeting of SCMR, San Francisco, California, 2013.

This work was supported by NIH grants P41RR09784, R01EB009690, American Heart Association 12BGIA9660006, and the Sloan Research Fellowship.

Approximate word count: 155 (Abstract) 4624 (body)

Submitted to Magnetic Resonance in Medicine as a Full Paper.

Noisy Flow Data

Divergence Free Wavelets

- Linear spline Φ_0
- Quadratic spline Φ_1
- Linear spline ψ_0
- Quadratic spline ψ_1

- Linear Comb. a
- Softthresh λ_n
- Softthresh λ_{df}
- Linear Comb. d