Design Through Optimization

- Idea: Sample/discretize the frequency response

\[H(e^{j\omega}) \Rightarrow H(e^{j\omega_k}) \]

- Sample points are fixed \(\omega_k = \frac{k\pi}{P} \)
- \(-\pi \leq \omega_1 < \cdots < \omega_p \leq \pi \)
- \(M+1 \) is the filter order
- \(P \gg M + 1 \) (rule of thumb \(P=15M \))
- Yields a (good) approximation of the original problem

Optimality

- Least Squares:

\[
\text{minimize } \int_{\omega \in \text{care}} |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega
\]

Variation: weighted least-squares

\[
\text{minimize } \int_{-\pi}^{\pi} W(\omega)|H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega
\]

Example: Least Squares

- Target: Design \(M+1=2N+1 \) filter
- First design non-causal \(\tilde{H}(e^{j\omega}) \) and hence \(\tilde{h}[n] \)
- Then, shift to make causal

\[
h[n] = \tilde{h}[n - M/2]
\]

\[
H(e^{j\omega}) = e^{-j\frac{M}{2}} \tilde{H}(e^{j\omega})
\]
Example: Least Squares

- Matrix formulation:
 \[\tilde{h} = [\tilde{h}[-N], \tilde{h}[-N+1], \ldots, \tilde{h}[N]]^T \]
 \[b = [H_d(e^{j\omega_1}), \ldots, H_d(e^{j\omega_P})]^T \]
 \[A = \begin{bmatrix}
e^{-j\omega_1(-N)} & \ldots & e^{-j\omega_1(N)} \\
 \vdots \\
e^{-j\omega_P(-N)} & \ldots & e^{-j\omega_P(N)}
\end{bmatrix} \]

\[\arg\min_{\tilde{h}} ||A\tilde{h} - b||^2 \]

Least Squares

\[\arg\min_{\tilde{h}} ||A\tilde{h} - b||^2 \]

Solution:
\[\tilde{h} = (A^*A)^{-1}A^*b \]

- Result will generally be non-symmetric and complex valued.
- However, if \(\tilde{H}(e^{j\omega}) \) is real, \(\tilde{h}[n] \) should have symmetry!

Design of Linear-Phase L.P Filter

- Suppose:
 - \(\tilde{H}(e^{j\omega}) \) is real-symmetric
 - \(M \) is even (\(M+1 \) taps)

- Then:
 - \(\tilde{h}[n] \) is real-symmetric around midpoint

- So:
\[\tilde{H}(e^{j\omega}) = \tilde{h}[0] + \tilde{h}[1]e^{-j\omega} + \tilde{h}[\omega]e^{j\omega} + \tilde{h}[2]e^{-j2\omega} + \tilde{h}[\omega]e^{j2\omega} + \ldots \]
\[= \tilde{h}[0] + 2\cos(\omega)\tilde{h}[1] + 2\cos(2\omega)\tilde{h}[2] + \ldots \]

Least-Squares Linear-Phase Filter

Given \(M, \omega_P, \omega_S \) find the best LS filter:

\[A = \begin{bmatrix}1 & \cdots & 2\cos(M/2\omega_1) \\
 \vdots \\
1 & \cdots & 2\cos(M/2\omega_P) \\
\end{bmatrix} \]

\[b = [1, 1, \ldots, 1, 0, 0, \ldots, 0]^T \]
Least-Squares Linear-Phase Filter

Given M, ω_p, ω_s find the best LS filter:

$$A = \begin{bmatrix}
1 & \cdots & 2 \cos \left(\frac{M}{2} \omega_1 \right) \\
\vdots & & \vdots \\
1 & \cdots & 2 \cos \left(\frac{M}{2} \omega_p \right) \\
\vdots & & \vdots \\
1 & \cdots & 2 \cos \left(\frac{M}{2} \omega_s \right)
\end{bmatrix}$$

$$b = [1, 1, \cdots, 1, 0, 0, \cdots, 0]^T$$

$$\tilde{b}_+ = [\tilde{h}[0], \cdots, \tilde{h}[M/2]]^T = (A^* A)^{-1} A^* b$$

$$\tilde{h} = \begin{cases}
\tilde{h}_+[n] & n \geq 0 \\
\tilde{h}_+[-n] & n < 0
\end{cases}$$

$$h[n] = \tilde{h}[n - M/2]$$

Extension:

- LS has no preference for pass band or stop band
- Use weighting of LS to change ratio

want to solve the discrete version of:

$$\min_\omega \int_{-\pi}^{\pi} W(\omega) |H(e^{j\omega}) - H_d(e^{j\omega})|^2 d\omega$$

where $W(\omega)$ is δ_p in the pass band and δ_s in stop band

Similarly: $W(\omega)$ is 1 in the pass band and δ_p/δ_s in stop band

Weighted Least-Squares

$$\argmin_{\tilde{h}_+} (A\tilde{h}_+ - b)^* W^2 (A\tilde{h}_+ - b)$$

Solution:

$$\tilde{h}_+ = (A^* W^2 A)^{-1} W^2 A^* b$$

$$W = \begin{bmatrix}
1 & & & & \delta_p \\
& 1 & & & \delta_p \\
& & \ddots & & \delta_p \\
& & & \ddots & \delta_p \\
& & & & \delta_p
\end{bmatrix}$$

Min-Max optimal Filters

- Chebychev Design (min-max)

$$\min_{\omega \in \text{care}} \max |H(e^{j\omega}) - H_d(e^{j\omega})|$$

- Parks-McClellan algorithm - equi-ripple
- Also known as Remez exchange algorithms (signal.remez)
- Also with convex optimization
Specifications

- Filter specifications are given in terms of boundaries

Min-Max Filter Design

- Minimize:
 - max pass-band ripple
 \[1 - \delta_p \leq |H(e^{j\omega})| \leq 1 + \delta_p, \quad 0 \leq \omega \leq \omega_p \]
 - min-max stop-band ripple
 \[|H(e^{j\omega})| \leq \delta_s, \quad \omega_s \leq \omega \leq \pi \]

Min-max Ripple Design

- Recall, \(\tilde{H}(e^{j\omega}) \) is symmetric and real
- Given \(\omega_p \omega_s M \), find \(\delta, \tilde{h}_+ \):
 - minimize \(\delta \)
 - Subject to:
 \[1 - \delta \leq \tilde{H}(e^{j\omega_k}) \leq 1 + \delta, \quad 0 \leq \omega_k \leq \omega_p \]
 \[-\delta \leq \tilde{H}(e^{j\omega_k}) \leq \delta, \quad \omega_s \leq \omega_k \leq \pi \]
 \[\delta > 0 \]
- Solution is a linear program in \(\delta, \tilde{h}_+ \)
- A well studied class of problems

Min-Max Ripple via Linear Programming

minimize \(\delta \)
subject to:

\[1 - \delta \leq A_p \tilde{h}_+ \leq 1 + \delta \]
\[-\delta \leq A_s \tilde{h}_+ \leq \delta \]
\[\delta > 0 \]

\[A_p = \begin{bmatrix} 1 & 2 \cos(\omega_1) & \cdots & 2 \cos(\frac{M-1}{2} \omega_1) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 2 \cos(\omega_p) & \cdots & 2 \cos(\frac{M-1}{2} \omega_p) \end{bmatrix} \]
\[A_s = \begin{bmatrix} 1 & 2 \cos(\omega_1) & \cdots & 2 \cos(\frac{M-1}{2} \omega_1) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 2 \cos(\omega_p) & \cdots & 2 \cos(\frac{M-1}{2} \omega_p) \end{bmatrix} \]
Convex Optimization

- Many tools and Solvers
 - Tools:
 - CVX (Matlab) http://cvxr.com/cvx/
 - CVXOPT, CVXMOD (Python)
 - Engines:
 - Sedumi (Free)
 - MOSEK (commercial)
- Take EE127!

Using CVX (in Matlab)

```matlab
M = 16;
wp = 0.5*pi;
ws = 0.6*pi;
MM = 15*M;
w = linspace(0,pi,MM);
idxp = find(w <=wp);
idxs = find(w >=ws);
Ap = [ones(length(idxp),1) 2*cos(kron(w(idxp),[1:M/2]));
As = [ones(length(idxs),1) 2*cos(kron(w(idxs),[1:M/2]));

% optimization
cvx_begin
variable hh(M/2+1,1);
variable d(1,1);
minimize(d)
subject to
   Ap*hh <=1+d;
   Ap*hh >=1-d;
   As*hh <  d;
   As*hh > -d;
d>0;
cvx_end

h = [hh(end:-1:1) ; hh(2:end)];
```

Variations:

- Convex Problems:
 - Fix δ_s optimize for δ_p
 - Fix δ_p optimize for δ_s
 - Linear constraints on $h[n]$
- Quasi-Convex (feasible through bisection)
 - Fix δ_p, δ_s, M, minimize $\Delta \omega = \omega_s - \omega_p$
 - Fix δ_p, δ_s, $\Delta \omega = \omega_s - \omega_p$, minimize M

Bisection Example: Minimize M

- given δ_p, δ_s, $\Delta \omega = \omega_s - \omega_p$ Initialize problem with:
 - Set M_{min} to be small and hence infeasible
 - Set M_{max} to be large and hence feasible
 - Set $M = \text{floor}(M_{\text{max}}/2 + M_{\text{min}}/2)$
- Given M, δ_p, $\Delta \omega = \omega_s - \omega_p$ solve for minimum δ_s
 - If δ_s violates constrains, set $M_{\text{min}} = M$
 - if δ_s within constraints, set $M_{\text{max}} = M$
 - Set $M = \text{floor}(M_{\text{max}}/2 + M_{\text{min}}/2)$
 - Repeat till M is tight
IIR Design

• Historically
 – Continuous IIR design was advanced
 – Use results from C.T to D.T
 – C.T IIR designs have closed form, easy to use
 – Easy to control Magnitude, not easy to control phase

• Common Types:
 – Butterworth - monotonic, no ripple
 – Chebyshev - Type I, pass band ripple, Type II stop band ripple
 – Elliptic - Ripples in both bands

Design of D.T IIR Filters from Analog

• Discretize by one of many techniques
• $H_c(s) \Rightarrow H(z)$

• Must satisfy:
 – Imaginary axis is mapped to unit circle
 – Stability of $H_c(s)$ should result in stable $H(z)$

• Two methods:
 – Impulse invariance - match impulse response
 – Bilinear transformation