EE123
Digital Signal Processing

Lecture 7
Block Convolution, Overlap and Add,
FFT

based on slides by J.M. Kahn M. Lustig, EECS UC Berkeley




Last Time

* Discrete Fourier Transform
— Properties of the DFT
— Linear convolution through circular

- Today

—Linear convolution with DFT
- Overlap and add
 Overlap and save

— Fast Fourier Transform (start)

M. Lustig, EECS UC Berkeley




Block Convolution

* Problem:

— An input signal x[n], has very long length
(could be considered infinite)

— An impulse response h[n] has length P

— We want to take advantage of DFT/FFT and
compute convolutions in blocks that are shorter
than the signal

* Approach:
— Break the signal into small blocks
— Compute convolutions
— Combine the results
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Block Convolution

Example:

h[n] Impulse response, Length P=6
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x[n] Input Signal, Length P=33

y[n] Output Signal, Length P=38
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Overlap-Add Method

We decompose the input signal x[n] into non-overlapping segments
x,[n] of length L:

x[n] rL<n<(r+1)L-1
x,[n] = _
0 otherwise

The input signal is the sum of these input segments:

x[n] = x[n]
r=0
The output signal is the sum of the output segments x,[n] x h[n]:
y[n] = x[n] x h{n] = > _ x[n]  hn] (1)
r=0

Each of the output segments x,[n] * h[n] is of length
M=L+P—-1.
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Overlap-Add Method

We can compute each output segment x,[n] * h[n] with linear
convolution.
DFT-based circular convolution is usually more efficient:

@ Zero-pad input segment x,[n] to obtain x, ,,[n], of length M

@ Zero-pad the impulse response h[n] to obtain h,,[n], of length
N (this needs to be done only once).

@ Compute each output segment using:

x.[n] * h[n] = DFT {DFT {x 2p[n]} - DFT {hyp[n]}}

Since output segment x,[n] x h[n] starts offset from its neighbor
Xr—1[n] * h[n] by L, neighboring output segments overlap at P — 1
points.

Finally, we just add up the output segments using (1) to obtain the
output.
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Example of overlap and add:
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Overlap-Save Method

Basic Idea
We split the input signal x[n] into overlapping segments x,[n] of
length L 4+ P — 1.

Perform a circular convolution of each input segment x,[n] with
the impulse response h[n], which is of length P using the DFT.
|ldentify the L-sample portion of each circular convolution that
corresponds to a linear convolution, and save it.

This is illustrated below where we have a block of L samples
circularly convolved with a P sample filter.
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Recall:

T1|n)
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DFT vs DTFT (revisit)

» Back to moving average example:
4

E : e—jwn

X (&%)
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DFT and Sampling the DTFT

X(ejw) _ e—j4w
x[n]
51 Q-
7 o | 0
3|
ol o o
Mg
0 D
o 5 10 15
n
reconstructed x[n]
5| ' o
4t oy ®
3¢ q
ol
1}
0
o 2 4 6
n

sin®(5w /2)
sin®(w/2)

IX(e!)]
250 -
20-\ :

15+

10t

25(

20t

15+

10

Miki Lustig UCB. Based on Course Notes by J.M Kahn

Fall 2011,

EE123 Digital Signal Processing




Circular Convolution as Matrix Operation

Circular convolution:

h[0]
h[1]
h[n] @ x[n]

- h[N — 1]
= H.x

@ H. is a circulant matrix

matrices.
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AN — 1]
h[O]
hIN — 2]

SP 2014

1] ] [ xl0]
2l | | ]
h[O] 1L X[:N-ll

@ The columns of the DFT matrix are Eigen vectors of circulant

@ Eigen vectors are DFT coefficients. How can you show?

Proof in HW
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Circular Convolution as Matrix Operation
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@ Diagonalize:
 H[0)] O--- 0 |
WyHW 1= 0 H[1]-- 0
B 0 HIN —1] |
@ Right-multiply by Wy
- H[0)] O--- 0 |
WyH.=| 0 HI[1]-- 0 Wiy
] 0 HIN —1] |
@ Multiply both sides by x
- H[0] O--- 0 |
WyHx=| 0 H[1]-- 0 Wiy x
i 0 HIN —1] |

SP 2014
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Fast Fourier Transform Algorithms

and inverse DFT:

Miki Lustig UCB. Based on Course Notes by J.M Kahn

@ We are interested in efficient computing methods for the DFT

N—1

X[k] = x[n|WE",  k=0,...,N—1
n=0
N—1

x[n] = XKWy " n=0,...,N—1
k=0

where
W/\/ = e_J(2W7T
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@ Recall that we can use the DFT to compute the inverse DFT:
1 ]
DFT YHX[K]} = & (DFT{X"[K]})

Hence, we can just focus on efficient computation of the DFT.

@ Straightforward computation of an N-point DFT (or inverse
DFT) requires N? complex multiplications.
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@ Fast Fourier transform algorithms enable computation of an
N-point DFT (or inverse DFT) with the order of just

N - log, N complex multiplications.
This can represent a huge reduction in computational load,

especially for large N.

2
N N2 N-loga N | miogw
16 256 64 4.0
128 16,384 896 18.3
1,024 | 1,048,576 | 10,240 102.4
8,192 | 67,108,864 | 106,496 630.2
6 x 10° | 36 x 101° | 135 x 10° | 2.67 x 10°
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@ Most FFT algorithms exploit the following properties of W,(}”:

o Conjugate Symmetry
Wﬁ(N_”) — WI\Tkn _ (W,Cn)*
e Periodicity in n and k:

n k(n+N k+N)n
Wk — W/\/( ) — W/E/ )

e Power:
W/%/ — WN/2
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@ Most FFT algorithms decompose the computation of a DFT
into successively smaller DFT computations.
o Decimation-in-time algorithms decompose x[n] into
successively smaller subsequences.
o Decimation-in-frequency algorithms decompose X|[k]| into
successively smaller subsequences.

@ We mostly discuss decimation-in-time algorithms here.

Assume length of x[n] is power of 2 ( N = 2"). If smaller
zero-pad to closest power.
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Decimation-in- Time Fast Fourier Transform

@ We start with the DFT

N—1
X[k =) x[AWR", k=0,...,N—1
n=0

@ Separate the sum into even and odd terms:
X[k = > x[nWy" + > x[n]Wg"
n even n odd

These are two DFT's, each with half of the samples.
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Decimation-in- Time Fast Fourier Transform

Let n = 2r (n even) and n = 2r 4+ 1 (n odd):

(N/2)-1 (N/2)-1
Xk = > xRAWg*+ Y xer+ 1wk
r=0 r=0
(N/2)-1 (N/2)-1
= > xRrAWFF+ WY > x[2r + WX
r=0 r=0

@ Note that:

Remember this trick, it will turn up often.
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Decimation-in- Time Fast Fourier Transform

@ Hence:
(N/2)—1 (N/2)—1
X[k] = Z x[2r] /\//2+W/<(/ Z x[2r + 1]W, /\//2
r=0 r=0

2 G[k] + WEH[K], k=0,...,N—1

where we have defined:

(N/2)-1
Z x[2r]W N/2 = DFT of even idx
r=0

(N/2)—1
> x[2r+1]Wf, = DFT of odd idx
r=0

G[K]

1>

HIK]
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Decimation-in- Time Fast Fourier Transform

An 8 sample DFT can then be diagrammed as
G[0]

x[0] o—— O 0 o X|0]
2 G[1] Wy /
S o— O X[1
% Xl N/2 - Point b g
%) DFT
c X[4] O—— X[2]
o
>
Y 6] o—— X[3]

x[1] o—— X[4]
(73]
O
g X3 T Ny2 - Point XL
3 DFT
< X[B] 60— X[6]
S
@)

x[7] o—— X[7]
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Decimation-in- Time Fast Fourier Transform

@ Both G[k] and H[k] are periodic, with period N /2. For
example
(N/2)—1
Glk+N/2l = S xfrqwys?
r=0
(N/2)—1
r r(N /2
= Z X[Qr]WNk/zw/v(/z/)
r=0
(N/2)-1
= Z x[2r] W/(/k/z
r=0
= G[K]
SO
Glk+ (N/2)] = GlK]
Hlk+(N/2)] = H[K]
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Decimation-in- Time Fast Fourier Transform

@ The periodicity of G[k| and H[k] allows us to further simplify.

o For the first N/2 points we calculate G[k] and WH[k], and
then compute the sum

X[k] = G[k] + WxH[K] V{k:0< k< g}.

How does periodicity help for 5 < k < N?
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Decimation-in- Time Fast Fourier Transform

X[k] = G[k] + WxH[K] V{k:0< k< g}.

ofor%§k<N:

WiHNI2)

X[k + (N/2)] =

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Processing




Decimation-in- Time Fast Fourier Transform

X[k + (N/2)] = G[k] — WSHIK]

We previously calculated G[k] and W H[K].

Now we only have to compute their difference to obtain the second
half of the spectrum. No additional multiplies are required.
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Decimation-in- Time Fast Fourier Transform

x[0]
x[2]
x[4]

Even Samples

x[6]
x[1]
x[3]
x[5]

Odd Samples

x[7]

O—

O————

N/2 - Point
DFT

Glk]

N/2 - Point
DFT
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@ The N-point DFT has been reduced two N /2-point DFTs,
plus N /2 complex multiplications. The 8 sample DFT is then:

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]

X[7]




Decimation-in- Time Fast Fourier Transform

@ Note that the inputs have been reordered so that the outputs

come out in their proper sequence.
@ We can define a butterfly operation, e.g., the computation of

X|[0] and X[4] from G[0] and HIO]:

X101 =G[o] + W, Hjo

G[0]

X[4] =G[0] - Wy H[0]

H[0]

This is an important operation in DSP.

, EE123 Digital Signal Processing
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Decimation-in- Time Fast Fourier Transform

e Still O(N?) operations..... What shall we do?
G[K]

x[0] o X[0]
3
§ X2 N/2 - Point X[
N DFT
c X[M4] o—— X[2]
>
Y ] o—— X[3]

x[1] o—— X[4]
(7))
)
g X[ N/2 - Point Xl
& DFT
= X[5] o—— X[6]
ke
@)

x[7] o—— X[7]
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Decimation-in- Time Fast Fourier Transform

@ We can use the same approach for each of the N /2 point
DFT's. For the N = 8 case, the N/2 DFTs look like

x[0] o— O
o N/4 - Point GloI
DFT
x[4] o— o G[1]
x[2] o O
<] N/4 - Point G2l
DFT

x[6] O— o G[3]

*Note that the inputs have been reordered again.
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Decimation-in- Time Fast Fourier Transform

@ At this point for the 8 sample DFT, we can replace the
N/4 =2 sample DFT’s with a single butterfly.
The coefficient is

Wija = Wejg = Wo = e /7 = -1

The diagram of this stage is then
x[0] o x[0] + x[4]

Y -
Q
Y

x[4] x[0] - x[4]
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Decimation-in- Time Fast Fourier Transform

Combining all these stages, the diagram for the 8 sample DFT is:

x[0] X[0]
x[4] X[1]
x[2] X[2]
x[6] X[3]
x[1] X[4]
x[5] X[5]
x[3] X[6]
x[7] X[7]

This the decimation-in-time FFT algorithm.
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Decimation-in- Time Fast Fourier Transform

@ In general, there are log, N stages of decimation-in-time.

@ Each stage requires N /2 complex multiplications, some of
which are trivial.

@ The total number of complex multiplications is (N /2)log, N.

@ The order of the input to the decimation-in-time FFT
algorithm must be permuted.
o First stage: split into odd and even. Zero low-order bit first

o Next stage repeats with next zero-lower bit first.
o Net effect is reversing the bit order of indexes
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Decimation-in- Time Fast Fourier Transform

This is illustrated in the following table for N = 8.

Decimal | Binary | Bit-Reversed Binary | Bit-Reversed Decimal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 §)
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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Decimation-in-Frequency Fast Fourier Transform

The DFT is
N—1

X[k =) x[n]Wgt

n=0

If we only look at the even samples of X[k], we can write k = 2r,

N—-1

X[2r] = 3 x[n)wg?")
n=0

We split this into two sums, one over the first N /2 samples, and
the second of the last /2 samples.

(N/2)—1 (N/2)—1
Xerl= 37 x[nWm+ N xin+ N/2wg T
n=0 n=0
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Decimation-in-Frequency Fast Fourier Transform

But W2”(”‘|'N/2) W2rn W@I — W2rn — Wwm

N/2:
We can then write
(N/2)—1 (N/2)—1
X2rl = Y x[WE"+ 3T x[n+ Nj2Jwy N
n=0 n=0
(N/2)-1 (N/2)-1
= > x[AWRT+ > x[n+ N/2QWR"
n=0 n=0
(N/2)—1
= > (X[l +x[n+ N/2]) Wi,
n=0

This is the N/2-length DFT of first and second half of x[n]
summed.
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Decimation-in-Frequency Fast Fourier Transform

X[2r] = DFTy {(x[n] +x[n+ N/2])}
X[2r+1] = DFTw {(x[n] - x[n+ N/2]) Wi}

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the N/2 DFTs, and the
N/4 DFT's until we reach simple butterflies.
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Decimation-in-Frequency Fast Fourier Transform

The diagram for and 8-point decimation-in-frequency DFT is as

follows

x[0]

x[1] s o . X[4]
X[2] V/; o8 X[2]
o XX

X[0]

X[6]
x[4] X[1]
X[5] » X[5]
x[6] / > X[3]
X[7] / 7 X[7]

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.
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Non-Power-of-2 FFT's

x[0]
X[3]
x[1]
x[4]
x[2]
X[5]

Miki Lustig UCB. Based on Course Notes by J.M Kahn

2-Point
DFT

2-Point
DFT

3-Point
DFT

2-Point
DFT

3-Point
DFT

SP 2014

A similar argument applies for any length DFT, where the length
N is a composite number.
For example, if N = 6, a decimation-in-time FFT could compute
three 2-point DFT's followed by two 3-point DFT's

X[0]
X[2]
X[4]
X[1]
X[3]

X[5]

, EE123 Digital Signal Processing




Non-Power-of-2 FFT's

Good component DFT's are available for lengths up to 20 or so.
Many of these exploit the structure for that specific length. For
example, a factor of

W = eI TN = e7i5 = —j  Why?

just swaps the real and imaginary components of a complex
number, and doesn't actually require any multiplies.

Hence a DFT of length 4 doesn't require any complex multiplies.
Half of the multiplies of an 8-point DFT also don't require
multiplication.

Composite length FFT's can be very efficient for any length that
factors into terms of this order.

Miki Lustig UCB. Based on Course Notes by J.M Kahn SP 2014 , EE123 Digital Signal Processing




For example N = 693 factors into
N = (7)(9)(11)

each of which can be implemented efficiently. We would perform

@ 9 x 11 DFT's of length 7
@ 7 x 11 DFT's of length 9, and
@ 7 x9DFT's of length 11
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@ Historically, the power-of-two FFTs were much faster (better
written and implemented).

@ For non-power-of-two length, it was faster to zero pad to
power of two.

@ Recently this has changed. The free FFTW package
implements very efficient algorithms for almost any filter
length. Matlab has used FFTW since version 6
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FFT computation time (Matlab FFTW) on MacBookPro

0.015 T

0.01

run time [ms]

0.005

oL 1M1
50

100 150 200 250
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FFT as Matrix Operation

Miki Lustig UCB. Based on Course Notes by J.M Kahn

/ X[0] \ ( W,?IO ce W,(\)/”
th] = W/\<IO - W/f/”
\ X[N — 1] ) \ WIsIN'—l)o B WIEIN.—l)n

e Wy is fully populated = N? entries.

SP 2014

WI(\)I(N_I) \

k(N—1
wkN=1)

N—i N—1
w(N-DN-1) )

( x[0] \
xtn]
\ V1 /
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FFT as Matrix Operation

/ X[0] \ ( W0 WO - Wlf\JI(N_l) \ ( «[0] \
th] = W/\<IO .. W/\<I” .. W,/\;(/.V_l) xtn]
\ X[N — 1] / \ WIsIN'—l)o B WIEIN.—l)n B W,EIN—i)(N—l) ) K [N — 1] )

e Wy is fully populated = N? entries.
@ FFT is a decomposition of W) into a more sparse form:

Fr — Inj2 Dnyo Wi /2 0 Even-Odd Perm.
N Inja —Dnjo 0 Wy Matrix

® Iy is an identity matrix. Dy 5 is a diagonal with entries
17 WN? R W/Cl/z_l
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FFT as Matrix Operation

Example: N =4

10 1 0 1 1 0 0 1 0 0
|01 0 W 1 -1 0 0 0 0 1
10 -1 0 0 0 1 1 01 0
01 0 -W,||0 0o 1 -1]|000
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Beyond NlogN

* What if the signal x[n] has a k sparse frequency

— A. Gilbert et. al, “Near-optimal sparse Fourier representations via
sampling

— H. Hassanieh et. al, “Nearly Optimal Sparse Fourier Transform”

— Others......
« O(K Log N) instead of O(N Log N)
Run Time vs Signal Size (k=50) Run Time vs Signal Sparsity (N=222)
10 F
IsFFT 3.0 (Exact) 10
FFTW ~o==== *
1 AAFFT 0.9 e I
. Y e
S I /_.ur" S 1 ‘ /
@ 0.1 ¥ @
L2 I . 2 :
g oo1 [ L 2 o1 ¢
S o001t v - S 001 |
o T T S N 8 — o SFFT 3.0 (Exact)
0.0001 A ! FFTW "mmmmmm=mm===
e 0.001 | AAFFT 0.9
1e-05 |
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 25 27 28 29 210 211 212 213 214 215 216 217 218
Signal Size (n) Sparsity (K)

From: http://groups.csail.mit.edu/netmit/sFFT/paper.html M. Lustig, EECS UC Berkeley




