EE123
Digital Signal Processing

Lecture 10
Announcements

• Midterm: Friday next week
 – Open everything
 – ... but cheat sheet recommended instead
 – Who can not stay till 5pm?

• Optional homework next week
 – Will give you midterm and practice questions

• How’s lab I going?
How do you know this guy is insane?

Hi, Dr. Elizabeth?
Yeah, uh... I accidentally took the Fourier transform of my cat...

Spectrum not symmetric, so cat must be imaginary

http://xkcd.com/26/
Last Time

- Frequency Analysis with DFT
- Windowing
- Zero-Padding

Today:
- Time-Dependent Fourier Transform
- Heisenberg Boxes
Discrete Transforms (Finite)

- DFT is only one out of a LARGE class of transforms
- Used for:
 - Analysis
 - Compression
 - Denoising
 - Detection
 - Recognition
 - Approximation (Sparse)

Sparse representation has been one of the hottest research topics in the last 15 years in sp
Example of spectral analysis

- Spectrum of a bird chirping
 - Interesting,... but...
 - Does not tell the whole story
 - No temporal information!

M. Lustig, EECS UC Berkeley
Time Dependent Fourier Transform

• To get temporal information, use part of the signal around every time point

\[X[n, \omega) = \sum_{m=-\infty}^{\infty} x[n + m] w[m] e^{-j\omega m} \]

*Also called Short-time Fourier Transform (STFT)

• Mapping from 1D \(\Rightarrow \) 2D, \(n \) discrete, \(w \) cont.

• Simply slide a window and compute DTFT
Time Dependent Fourier Transform

- To get temporal information, use part of the signal around every time point

\[X[n, \omega] = \sum_{m=-\infty}^{\infty} x[n + m] w[m] e^{-j\omega m} \]

Also called Short-time Fourier Transform (STFT)
Discrete Time Dependent FT

\[X_r[k] = \sum_{m=0}^{L-1} x[rR + m]w[m]e^{-j2\pi km/N} \]

• L - Window length
• R - Jump of samples
• N - DFT length

• Tradeoff between time and frequency resolution
Heisenberg Boxes

- Time-Frequency uncertainty principle

\[\sigma_t \cdot \sigma_\omega \geq \frac{1}{2} \]

\[\omega \]

\[\sigma_t \]

\[\sigma_\omega \]

\[t \]
DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}$$

$$\Delta \omega = \frac{2\pi}{N}$$

$$\Delta t = N$$

$$\Delta \omega \cdot \Delta t = 2\pi$$

one DFT coefficient
DFT

\[X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N} \]

\[\Delta \omega = \frac{2\pi}{N} \]
\[\Delta t = N \]
\[\Delta \omega \cdot \Delta t = 2\pi \]

Question: What is the effect of zero-padding?
Answer: Overlapped Tiling!
Discrete STFT

\[X[r, k] = \sum_{m=0}^{L-1} x[rR + m] \omega[m] e^{-j2\pi km/N} \]

\[\Delta \omega = \frac{2\pi}{L} \]

\[\Delta t = L \]

M. Lustig, EECS UC Berkeley
Discrete STFT

\[
X[r, k] = \sum_{m=0}^{L-1} x[rR + m]w[m]e^{-j2\pi km/N}
\]

\[
\Delta \omega = \frac{2\pi}{L}
\]

\[
\Delta t = L
\]

Question: What is the effect of R on tiling? what effect of N?
Answer: Overlapping in time of frequency or both!

M. Lustig, EECS UC Berkeley
Applications

• Time Frequency Analysis

Spectrogram of Orca whale
• What is the difference between the spectrograms?

a) Window size B<A
b) Window size B>A
c) Window type is different
d) (A) uses overlapping window
Sidelobes of Hann vs rectangular window

```
Here we consider several examples. As before, the sampling rate is $\frac{s}{2\pi} = \frac{1}{T} = 20$ Hz.

Rectangular Window, $L = 32$

Hamming Window, $L = 32$
```

Miki Lustig UCB. Based on Course Notes by J.M Kahn
Fall 2011, EE123 Digital Signal Processing
• What is the difference between the spectrograms?

a) Window size $B<A$

b) Window size $B>A$

c) Window type is different

d) (A) uses overlapping window

M. Lustig, EECS UC Berkeley
Spectrogram

Hamming Window, \(L = 32 \)

![Hamming Window, \(L = 32 \)](image)

Hamming Window, \(L = 64 \)

![Hamming Window, \(L = 64 \)](image)
Spectrogram of FM

\[y_c(t) = A \cos \left(2\pi f_c t + 2\pi \Delta f \int_0^t x(\tau) d\tau \right) \]

\[y[n] = y(nT) = A \exp \left(j2\pi \Delta f \int_0^{nT} x(\tau) d\tau \right) \]

Spectrogram of FM radio
Spectrogram of FM radio Baseband

\[y[n] = y(nT) = A \exp \left(j2\pi \Delta f \int_0^{nT} x(\tau) d\tau \right) \]

\[x(t) = (L + R) + 0.1 \cdot \cos(2\pi f_p t) + (L - R) \cos(2\pi (2f_p) t) + 0.05 \cdot \text{RBDS}(t) \cos(2\pi (3f_p) t). \]

Broadcast FM baseband signal

Spectrogram of \textbf{Demodulated} FM radio (Adele on 96.5 MHz)
Subcarrier FM radio (Hidden Radio Stations)
Applications

- Time Frequency Analysis

Spectrogram of digital communications - Frequency Shift Keying

$t=0$
$t=1\text{sec}$
STFT Reconstruction

\[x[rR + m]w_L[m] = \frac{1}{N} \sum_{k=0}^{N-1} X[n, k]e^{j2\pi km/N} \]

• For non-overlapping windows, \(R=L \):

\[x[n] = \frac{x[n - rL]}{w_L[n - rL]} \]

\[rL \leq n \leq (r + 1)R - 1 \]

• What is the problem?
STFT Reconstruction

$$x[rR + m]w_L[m] = \frac{1}{N} \sum_{k=0}^{N-1} X[n, k] e^{j2\pi km/N}$$

- For non-overlapping windows, $R=L$:

$$x[n] = \frac{x[n - rL]}{w_L[n - rL]}$$

$$rL \leq n \leq (r+1)R - 1$$

- For stable reconstruction must overlap window 50% (at least)
STFT Reconstruction

• For stable reconstruction must overlap window 50% (at least)

• For Hann, Bartlett reconstruct with overlap and add. No division!
Applications

- Noise removal
- Recall bird chirp

Example: Bird Chirp

Play Sound!

Spectrum of a bird chirp

$X[n]$
Application

- Denoising of Sparse spectrograms

- Spectrum is sparse! can implement adaptive filter, or just threshold!
Limitations of Discrete STFT

• Need overlapping \Rightarrow Not orthogonal

• Computationally intensive $O(MN \log N)$

• Same size Heisenberg boxes
From STFT to Wavelets

Basic Idea:
- Low-freq changes slowly - fast tracking unimportant
- Fast tracking of high-freq is important in many apps.
- Must adapt Heisenberg box to frequency

Back to continuous time for a bit.....