Lecture 12
Introduction to Wavelets
Last Time

- Started with STFT
- Heisenberg Boxes

- Continue and move to wavelets

- Ham exam -- see Piazza post
 - Please register at www.eastbayarc.org/form605.htm
Discrete STFT

\[X[r, k] = \sum_{m=0}^{L-1} x[rR + m] \omega[m] e^{-j2\pi km/N} \]

\[\Delta\omega = \frac{2\pi}{L} \]

\[\Delta t = L \]

one STFT coefficient
Limitations of Discrete STFT

• Need overlapping \Rightarrow Not orthogonal

• Computationally intensive $O(MN \log N)$

• Same size Heisenberg boxes
From STFT to Wavelets

• Basic Idea:
 – low-freq changes slowly - fast tracking unimportant
 – Fast tracking of high-freq is important in many apps.
 – Must adapt Heisenberg box to frequency

• Back to continuous time for a bit.....
From STFT to Wavelets

- Continuous time

\[S f(u, \Omega) = \int_{-\infty}^{\infty} f(t)w(t - u)e^{-j\Omega t} \, dt \]

\[W f(u, s) = \int_{-\infty}^{\infty} f(t)\frac{1}{\sqrt{s}}\Psi^*\left(\frac{t-u}{s}\right) \, dt \]

Morlet - Grossmann
From STFT to Wavelets

\[Wf(u, s) = \int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{s}} \Psi^* \left(\frac{t - u}{s} \right) dt \]

- The function \(\Psi \) is called a mother wavelet
 - Must satisfy:
 \[
 \int_{-\infty}^{\infty} |\Psi(t)|^2 dt = 1 \quad \Rightarrow \text{unit norm}
 \]
 \[
 \int_{-\infty}^{\infty} \Psi(t) dt = 0 \quad \Rightarrow \text{Band-Pass}
 \]
STFT and Wavelets “Atoms”

STFT Atoms
(with hamming window)

\[w(t - u)e^{j\Omega t} \]

\[\Omega_{hi} \]

\[\Omega_{lo} \]

Wavelet Atoms

\[\frac{1}{\sqrt{s}} \Psi\left(\frac{t - u}{s}\right) \]

\[s = 1 \]

\[s = 3 \]

M. Lustig, EECS UC Berkeley
Examples of Wavelets

- **Mexican Hat**
 \[
 \Psi(t) = (1 - t^2)e^{-t^2/2}
 \]

- **Haar**
 \[
 \Psi(t) = \begin{cases}
 -1 & 0 \leq t < \frac{1}{2} \\
 1 & \frac{1}{2} \leq t < 1 \\
 0 & \text{otherwise}
 \end{cases}
 \]
Example: Wavelet of Chirp
Wavelets VS STFT
Example 2: “Bumpy” Signal

log(s)

SombreroWavelet

M. Lustig, EECS UC Berkeley
Wavelets Transform

- Can be written as linear filtering

\[
W_f(\mu, s) = \frac{1}{\sqrt{s}} \int_{-\infty}^{\infty} f(t) \overline{\Psi}(\frac{t - \mu}{s}) dt
\]

\[
= \{ f(t) \ast \overline{\Psi}_s(t) \} (\mu)
\]

\[
\overline{\Psi}_s = \frac{1}{\sqrt{s}} \Psi(\frac{t}{s})
\]

- Wavelet coefficients are a result of bandpass filtering
Wavelet Transform

• Many different constructions for different signals
 – Haar good for piece-wise constant signals
 – Battle-Lemarie’ : Spline polynomials

• Can construct Orthogonal wavelets
 – For example: dyadic Haar is orthonormal

\[\overline{\Psi}_{i,n}(t) = \frac{1}{\sqrt{2^i}} \Psi \left(\frac{t - 2^i n}{2^i} \right) \]
\(i = [1, 2, 3, \cdots] \)
Orthonormal Haar

Same scale non-overlapping

Orthogonal between scales
Scaling function

\[\overline{\Psi}_{i,n}(t) = \frac{1}{\sqrt{2^i}} \Psi\left(\frac{t - 2^i n}{2^i}\right) \]

• Problem:
 – Every stretch only covers half remaining bandwidth
 – Need Infinite functions

recall, for chirp:
Scaling function

$$\overline{\Psi}_{i,n}(t) = \frac{1}{\sqrt{2^i}} \Psi\left(\frac{t - 2^i n}{2^i}\right)$$

- **Problem:**
 - Every stretch only covers half remaining bandwidth
 - Need Infinite functions
- **Solution:**
 - Plug low-pass spectrum with a scaling function $\overline{\Phi}$
Haar Scaling function

\[\Psi(t) = \begin{cases}
-1 & 0 \leq t < \frac{1}{2} \\
1 & \frac{1}{2} \leq t < 1 \\
0 & \text{otherwise}
\end{cases} \]

\[\Phi(t) = \begin{cases}
1 & 0 \leq t < 1 \\
0 & \text{otherwise}
\end{cases} \]
Back to Discrete

- Early 80’s, theoretical work by Morlett, Grossman and Meyer (math, geophysics)
- Late 80’s link to DSP by Daubechies and Mallat.

- From CWT to DWT not so trivial!
- Must take care to maintain properties
Discrete Wavelet Transform

\[d_{s,u} = \sum_{n=0}^{N-1} x[n] \Psi_{s,u}[n] \]

\[a_{s,u} = \sum_{n=0}^{N-1} x[n] \Phi_{s,u}[n] \]
Discrete Wavelet Transform

\[d_{s,u} = \sum_{n=0}^{N-1} x[n] \Psi_{s,u}[n] \]

\[a_{s,u} = \sum_{n=0}^{N-1} x[n] \Phi_{s,u}[n] \]
Example: Discrete Haar Wavelet
Haar for $n=2$

Equivalent to DFT$_2$!
Discrete Orthogonal Haar Wavelet

Haar for $n=8$

scaling Φ_{20}

Ψ_{20}

Ψ_{10}

Ψ_{11}

Ψ_{00}

Ψ_{01}

Ψ_{02}

Ψ_{03}

ω

t
Fast DWT with Filter Banks (more Later!)

\[h_0[n] \rightarrow h_1[n] \]

\[x[n] \rightarrow h_0[n] \rightarrow a_{0n}? \]
\[\quad \rightarrow h_1[n] \rightarrow d_{0n}? \]

not quite... too many coefficients
Fast DWT with Filter Banks

\[x[n] \rightarrow h_0[n] \rightarrow h_1[n] \rightarrow d_0[n] \rightarrow \downarrow 2 \rightarrow a_0[n] \downarrow 2 \]
Fast DWT with Filter Banks

\[x[n] \rightarrow h_0[n] \rightarrow h_1[n] \rightarrow \downarrow 2 \rightarrow a_{0n} \] \[h_0[n] \rightarrow h_1[n] \rightarrow \downarrow 2 \rightarrow d_{0n} \]

\[h_0[n] \rightarrow h_0[n] \rightarrow a_{1n} \]

\[h_1[n] \rightarrow h_1[n] \rightarrow \downarrow 2 \rightarrow d_{1n} \]

Complexity:

\[N + N/2 + N/4 + N/8 + \ldots + = 2N = O(N) \]
Decomposition

\[x[n] \rightarrow h_0[n] \rightarrow h_1[n] \rightarrow d_0[n] \]

\[h_0[n] \rightarrow \downarrow 2 \rightarrow a_0[n] \]

\[h_1[n] \rightarrow \downarrow 2 \rightarrow d_0[n] \]

\[h_0[n] \rightarrow \downarrow 2 \rightarrow a_1[n] \]

\[h_1[n] \rightarrow \downarrow 2 \rightarrow d_1[n] \]
Reconstruction

Just flip arrows, replace h with g
Haar DWT Example

x[n]

Haar

\[a_{2n} \quad d_{2n} \quad d_{1n} \quad d_{0n} \]
Approximation from 25/256 coefficients

Haar

DFT
Example: Denoising Noisy Signals

Haar
Example: Denoising by Thresholding

noisy

denoised
largest 25 coefficients
Compression - JPEG2000 vs JPEG

Jpeg2000 - Wavelet

Jpeg - DCT

@ 66 fold compression ratio
Compression - JPEG2000 vs JPEG

Jpeg2000 - Wavelet

Jpeg - DCT

@ 66 fold compression ratio
Noisy Wavelet Denoised
Approximation/Compression

0.000% coefficients
Example in Research

Robust 4D Flow Denoising using Divergence-free Wavelet Transform

Frank Ong1, Martin Uecker1, Umar Tariq2, Albert Hsiao2, Marcus T Alley2, Shreyas S Vasanawala2, Michael Lustig1

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California.
2Department of Radiology, Stanford University, Stanford, California.

Running head: 4D Flow Denoising with Divergence-free Wavelet Transform

Address correspondence to:
Michael Lustig
506 Cory Hall
University of California, Berkeley
Berkeley, CA 94720
TEL: (510) 643-9338
E-MAIL: mlustig@eecs.berkeley.edu

Presented in part at the 21st annual meeting of ISMRM, Salt Lake City, Utah, 2013, the annual meeting of ISBI, San Francisco, California, 2013 and the annual meeting of SCMR, San Francisco, California, 2013.

This work was supported by NIH grants P41RR09784, R01EB009690, American Heart Association 12BGIA9660006, and the Sloan Research Fellowship.

Approximate word count: 155 (Abstract) 4624 (body)

Submitted to Magnetic Resonance in Medicine as a Full Paper.

courtesy, Frank Ong and Marcus Alley
Noisy Flow Data
Divergence Free Wavelets

(a) Linear spline Φ_0
 Quadratic spline Φ_1

(b) Linear spline ψ_0
 Quadratic spline ψ_1

(c) Linear
 Softthresh (λn)
 Linear
 Softthresh (λdf_1)
 Linear
 Softthresh (λdf_2)

IWT (vx)
IWT (vy)
IWT (vz)
Divergence-Free Wavelet Denoising