Back to Discrete

- Early 80’s, theoretical work by Morlett, Grossman and Meyer (math, geophysics)
- Late 80’s link to DSP by Daubechies and Mallat.

- From CWT to DWT not so trivial!
- Must take care to maintain properties

Discrete Wavelet Transform

$$d_{s,u} = \sum_{n=0}^{N-1} x[n] \Psi_{s,u}[n]$$

$$a_{s,u} = \sum_{n=0}^{N-1} x[n] \Phi_{s,u}[n]$$

Discrete Orthogonal Haar Wavelet

Haar for n=8

scaling Φ_0

Ψ_0

Ψ_10

Ψ_11

Equivalent to DFT2!
Fast DWT with Filter Banks (more Later!)

Fast DWT with Filter Banks

Fast DWT with Filter Banks

Decomposition

Reconstruction

Example, Haar DWT - Level 0
Haar DWT Example

Approximation from 25/256 coefficients

Example: Denoising Noisy Signals

Example: Denoising by Thresholding

Compression - JPEG2000 vs JPEG

@ 66 fold compression ratio
Approximation/Compression

M. Lustig, EECS UC Berkeley
Robust 4D Flow Denoising using Divergence-free Wavelet Transform

Frank Ong1, Martin Uecker1, Umar Tariq1, Albert Hsiao2, Marcus T Alley2, Shreyas S Vasanawala2, Michael Lustig1

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California.
2Department of Radiology, Stanford University, Stanford, California.

Running head: 4D Flow Denoising with Divergence-free Wavelet Transform

Presented in part at the 21st annual meeting of ISMRM, Salt Lake City, Utah, 2013, the annual meeting of ISBI, San Francisco, California, 2013 and the annual meeting of SCMR, San Francisco, California, 2013.

This work was supported by NIH grants P41RR09784, R01EB009690, American Heart Association 12BGIA9660006, and the Sloan Research Fellowship.

Approximate word count: 155 (Abstract) 4624 (body)

Submitted to Magnetic Resonance in Medicine as a Full Paper.

Divergence Free Wavelets

Divergence-Free Wavelet Denoising