EE123
Digital Signal Processing

Lecture 13
DWT
• Early 80’s, theoretical work by Morlett, Grossman and Meyer (math, geophysics)
• Late 80’s link to DSP by Daubechies and Mallat.

• From CWT to DWT not so trivial!
• Must take care to maintain properties
Discrete Wavelet Transform

\[d_{s,u} = \sum_{n=0}^{N-1} x[n] \Psi_{s,u}[n] \]

\[a_{s,u} = \sum_{n=0}^{N-1} x[n] \Phi_{s,u}[n] \]
Discrete Wavelet Transform

\[d_{s,u} = \sum_{n=0}^{N-1} x[n] \Psi_{s,u}[n] \]

\[a_{s,u} = \sum_{n=0}^{N-1} x[n] \Phi_{s,u}[n] \]
Example: Discrete Haar Wavelet

Haar for $n=2$

$\Phi_{0,0}$

$\Psi_{0,0}$

scaling function

approximation

Equivalent to DFT$_2$!
Discrete Orthogonal Haar Wavelet

Haar for n=8

scaling Φ_{20}

Ψ_{20}

Ψ_{10}

Ψ_{11}

Ψ_{00}

Ψ_{01}

Ψ_{02}

Ψ_{03}

M. Lustig, EECS UC Berkeley
Fast DWT with Filter Banks (more Later!)

\[
\begin{align*}
 h_0[n] & \rightarrow h_1[n] \\
 x[n] & \rightarrow h_0[n] \rightarrow a_{0n}? \quad \text{not quite...} \\
 & \quad \quad \text{too many coefficients} \\
 & \rightarrow h_1[n] \rightarrow d_{0n}?
\end{align*}
\]
Fast DWT with Filter Banks

\[h_0[n] \quad h_1[n] \]

\[x[n] \xrightarrow{h_0[n]} \xrightarrow{h_1[n]} \xrightarrow{\downarrow 2} \]

\[\xrightarrow{\downarrow 2} a_{0n} \quad \xrightarrow{\downarrow 2} d_{0n} \]
Fast DWT with Filter Banks

\[h_0[n] \rightarrow h_1[n] \]

complexity:
\[N + N/2 + N/4 + N/8 + \ldots + = 2N \]
\[= O(N) \]

\(x[n] \)
\(h_0[n] \rightarrow \downarrow 2 \rightarrow a_{0n} \)
\(h_1[n] \rightarrow \downarrow 2 \rightarrow d_{0n} \)

\(h_0[n] \rightarrow \downarrow 2 \rightarrow a_{1n} \)
\(h_1[n] \rightarrow \downarrow 2 \rightarrow d_{1n} \)
Decomposition

\[x[n] \rightarrow h_0[n] \rightarrow \downarrow 2 \rightarrow a_{0n} \]

\[x[n] \rightarrow h_1[n] \rightarrow \downarrow 2 \rightarrow d_{0n} \]
Reconstruction

\[x[n] \leftarrow g_0[n] \leftarrow \uparrow 2 \text{ a}_{0n} \]

\[g_1[n] \leftarrow \uparrow 2 \text{ d}_{0n} \]

Just flip arrows, replace h with g
Example, Haar DWT - Level 0
Example, Haar DWT - Level 1
Example, Haar DWT - Level 2
Example, Haar DWT - Level 3
Example, Haar DWT - Level 4
Example, Haar DWT - Level 5
DWT Another view
Haar DWT Example

The diagram illustrates the Haar Discrete Wavelet Transform (DWT) for a given signal $x[n]$. The graph shows the approximation coefficients a_{2n} and the detail coefficients d_{2n}, d_{1n}, and d_{0n}.
Approximation from 25/256 coefficients

Haar

![Haar Approximation](image)

DFT

![DFT Approximation](image)
Example: Denoising Noisy Signals

Haar
Example: Denoising by Thresholding

noisy

denoised

largest 25 coefficients
Compression - JPEG2000 vs JPEG

Jpeg2000 - Wavelet

Jpeg - DCT

@ 66 fold compression ratio
Compression - JPEG2000 vs JPEG

Jpeg2000 - Wavelet
Jpeg - DCT

@ 66 fold compression ratio
Approximation/Compression
Example in Research

Robust 4D Flow Denoising using Divergence-free Wavelet Transform

Frank Ong1, Martin Uecker1, Umar Tariq2, Albert Hsiao2, Marcus T Alley2, Shreyas S Vasanawala2, Michael Lustig1

courtesy, Frank Ong and Marcus Alley
Noisy Flow Data

- DivFree & Non-DivFree Thresh Non-DivFree Thresh Only
- Original DivFree Wavelet Manual Threshold

Emitter plane from descending aorta
Emitter plane from ascending aorta
Emitter plane from ascending aorta
Original DFW Manual Threshold

Vector visualization Streamline visualization

0 cm/s 160 cm/s
0 cm/s 100 cm/s
Divergence Free Wavelets

(a) Linear spline Φ_0
Quadratic spline Φ_1
Linear spline ψ_0
Quadratic spline ψ_1

(b)

(c)
Divergence-Free Wavelet Denoising

- DivFree & Non-DivFree Thresh
- Non-DivFree Thresh Only

Original

DFW Manual Threshold

Vector visualization Streamline visualization

Emitter plane from descending aorta

Analysis plane from ascending aorta