Topics

• Did you sign up for the ham exam?
• Last time
 – D.T processing of C.T signals
 – C.T processing of D.T signals (ha??????)
 – Downsampling
• Today
 – Changing Sampling Rate via DSP
 – Upsampling
 – Rational resampling
 – Interchanging operations
Review DownSampling

• Much like C/D conversion
• Expect similar effects:
 – Aliasing
 – mitigate by antialiasing filter

• Finely sampled signal \(\Rightarrow\) almost continuous
 – Downsample in that case is like sampling!
Changing Sampling-rate via D.T Processing

\[X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{\infty} X \left(e^{j(\omega/M - 2\pi i / M)} \right) \]
Changing Sampling-rate via D.T Processing

\[X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{\infty} X \left(e^{j\left(\frac{\omega}{M} - \frac{2\pi i}{M}\right)} \right) \]
Anti-Aliasing

\[x[n] \xrightarrow{\text{LPF}} \tilde{x}[n] \xrightarrow{\downarrow M} \tilde{x}_d[n] = \tilde{x}[nM] \]
UpSampling

- Much like D/C converter
- Upsample by A LOT ⇒ almost continuous

- Intuition:
 - Recall our D/C model: \(x[n] \mapsto x_s(t) \mapsto x_c(t) \)
 - Approximate “\(x_s(t) \)” by placing zeros between samples
 - Convolve with a sinc to obtain “\(x_c(t) \)”
Up-sampling

\[x[n] = X_c(nT) \]

\[x_i[n] = X_c(nT') \quad \text{where} \quad T' = \frac{T}{L} \quad L \text{ integer} \]

Obtain \(x_i[n] \) from \(x[n] \) in two steps:

(1) Generate: \(x_e = \begin{cases}
 x[n/L] & n = 0, \pm L, \pm 2L, \cdots \\
 0 & \text{otherwise}
\end{cases} \)
(2) Obtain $x_i[n]$ from $x_e[n]$ by bandlimited interpolation:

$$x_i = x_e[n] * \text{sinc}\left(\frac{n}{L}\right)$$
Up-Sampling

\[x_i[n] = x_e[n] * \text{sinc}(n/L) \]

\[x_e[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n - kL] \]

\[x_i[n] = \sum_{k=-\infty}^{\infty} x[k] \text{sinc}(\frac{n - kL}{L}) \]
Frequency Domain Interpretation

\[x[n] \rightarrow \uparrow L \rightarrow x_e[n] \rightarrow \text{LPF} \begin{array}{c} \text{gain}=L \\ \pi/L \end{array} \rightarrow x_i[n] \]

\[\text{sinc}(n/L) \quad \text{DTFT} \Rightarrow \]

\[-\frac{\pi}{L} \quad \frac{\pi}{L} \]
Frequency Domain Interpretation

\[x[n] \xrightarrow{\uparrow L} x_e[n] \xrightarrow{\text{LPF}} x_i[n] \]

\[X_e(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x_e[n] e^{-j\omega n} \]

\[= \sum_{m=-\infty}^{\infty} x_e[mL] e^{-j\omega mL} \]

\[= x[m] \]

\[= X(e^{j\omega L}) \]

Compress DTFT by a factor of L!
Example:

\[X_c(j\Omega) \]

- **Sampling** \(T \)
- **Expanding** \(L \)

\[X(e^{j\omega}) \]

\[X_i(e^{j\omega}) \]

\[X_e(e^{j\omega}) \]

\[\Omega_N \]

\[\Omega \]
Example:

\[X(c(j\Omega)) \]

Sampling \(T \)

\[X(e^{j\omega}) \]

Expanding \(L \)

\[X_e(e^{j\omega}) \]

Sampling \(T'=T/L \)
Example:

$X_c(j\Omega)$

$X(e^{j\omega})$

$X_i(e^{j\omega})$

$X_e(e^{j\omega})$

sampling T

expanding L

sampling $T' = T/L$
Example:

- $X_c(j\Omega)$
- $X(e^{j\omega})$
- $X_i(e^{j\omega})$
- $X_e(e^{j\omega})$

Sampling T:

- $X(e^{j\omega})$ in the frequency domain.

Sampling T' = T/L:

- $X_i(e^{j\omega})$ in the frequency domain.

Expanding L:

- $X_e(e^{j\omega})$ in the frequency domain.
Example:

$$X_e(e^{j\omega})$$

$$X_i(e^{j\omega})$$

$$X_c(j\Omega)$$

sampling T

sampling $T'=T/L$

expanding L
Practical Upsampling

- Can interpolate with simple, practical filters. What’s happening?
- Example: $L=3$, linear interpolation - convolve with triangle

\[x[n] \]
Resampling by non-integer

- $T' = TM/L$ (upsample L, downsample M)

Or,

- What would happen if change order?

$\min\{\pi/L, \pi/M\}$
Example:

- $L = 2$, $M = 3$, $T' = \frac{3}{2}T$ (fig 4.30)

$X_c(j\Omega)$

Sampling T

$X(e^{j\omega})$

Expanding $L = 2$

Subsampling $M = 3$

$X_e(e^{j\omega})$

LP filtering

$\tilde{X}_i = H_d X_e$
Example:

• $L = 2, M = 3, \quad T' = \frac{3}{2}T$ (fig 4.30)

\[X_c(j\Omega) \]

\[X(e^{j\omega}) \]

\[X_e(e^{j\omega}) \]

\[\tilde{X}_i = H_d X_e \]
Multi-Rate Signal Processing

• What if we want to resample by $1.01T$?
 – Expand by $L=100$
 – Filter $\pi/101$ (\cdots)
 – Downsample by $M=101$

• Fortunately there are ways around it!
 – Called multi-rate
 – Uses compressors, expanders and filtering
Interchanging Operations

Note:

\[H(e^{j\omega})X(e^{j\omega}) \]

\[H(e^{j\omega L})X(e^{j\omega L}) \]

\[X(e^{j\omega L})H(e^{j\omega})X(e^{j\omega L}) \]
Interchanging Operations

\[H(z) \uparrow L \quad \text{“expander”} \quad \rightarrow \quad \downarrow M \quad \text{“compressor”} \]

Note:

\[x[n] \rightarrow H(z) \uparrow L \rightarrow y[n] \neq x[n] \uparrow L \rightarrow H(z) \rightarrow y[n] \]

\[H(e^{j\omega})X(e^{j\omega}) \]

\[H(e^{j\omega L})X(e^{j\omega L}) \]

\[X(e^{j\omega L})H(e^{j\omega})X(e^{j\omega L}) \]

\[\equiv x[n] \uparrow L \rightarrow H(z^L) \rightarrow y[n] \]

\[X(e^{j\omega L})H(e^{j\omega L})X(e^{j\omega L}) \]

M. Lustig, EECS UC Berkeley
Q: Can we move expander from Left to Right (with xform)?

A: Yes, if $H(z)$ is rational
No, otherwise
Example:

\[(2^2) = 4 - 2^2 \text{ not rational} \]

This can't be written as output of expander
(every other value is not zero)