Lecture 18
Filter Banks
Announcements

- Lab III due Sunday 11:55pm
- HW6 due Monday 11:55pm
- Midterm II Rescheduled Options 3/31 6:30-8:30 or 4/3 2-4 or 3-5
- Ham radio exam this Thursday (!!!)
 - Get your licenses next week
 - Get radios when you get a callsign
Last Time

• Polyphase decomposition

Today:

– Multi-rate Filter Banks
– Subtleties in Time-Frequency tiling
– Perfect reconstruction with non-ideal filters
– Polyphase filter banks
Polyphase Decomposition

- We can decomposed an impulse response to:

\[h[n] = \sum_{k=0}^{M-1} h_k[n - k] \]
Polyphase Decomposition

• Define:

\[h_k[n] \rightarrow \downarrow M \rightarrow e_k[n] \]

\[e_k[n] = h_k[nM] \]

\[h_0[n] \]

\[h_1[n] \]

\[e_0[n] \]

\[e_1[n] \]
Polyphase Decomposition

\[e_k[n] \rightarrow \uparrow M \rightarrow h_k[n] \]

recall upsampling ⇒ scaling

\[H_k(z) = E_k(z^M) \]

Also, recall:

\[h[n] = \sum_{k=0}^{M-1} h_k[n - k] \]

So,

\[H(z) = \sum_{k=0}^{M-1} E_k(z^M)z^{-k} \]
Polyphase Decomposition

\[H(z) = \sum_{k=0}^{M-1} E_k(z^M)z^{-k} \]

Why should you care?
Polyphase Implementation of Decimation

\[x[n] \rightarrow H(z) \rightarrow y[n] \downarrow M \rightarrow w[n] = y[nM] \]

• Problem:
 – Compute all \(y[n] \) and then throw away -- wasted computation!
 • For FIR length \(N \Rightarrow N \) mults/unit time
 – Can interchange Filter with compressor?
 • Not in general!
Polyphase Implementation of Decimation

\[x[n] \xrightarrow{H(z)} y[n] \xrightarrow{\downarrow M} w[n] = y[nM] \]

\[z^{-1} \]

\[H(z) \]

\[x[n] \]

\[E_0(z^M) \]

\[E_1(z^M) \]

\[\cdots \]

\[E_{M-1}(z^M) \]

\[+ \]

\[y[n] \xrightarrow{\downarrow M} w[n] \]
Polyphase Implementation of Decimation

\[x[n] \rightarrow H(z) \rightarrow y[n] \rightarrow \downarrow M \rightarrow w[n] = y[nM] \]

Interchange filter with decimation

\[x[n] \rightarrow E_0(z^M) \rightarrow \downarrow M \]
\[\rightarrow E_1(z^M) \rightarrow \downarrow M \]
\[\rightarrow \ldots \]
\[\rightarrow E_{M-1}(z^M) \rightarrow \downarrow M \]
\[\rightarrow + \rightarrow w[n] \]

now, what can we do?
Polyphase Implementation of Decimation

\[x[n] \xrightarrow{H(z)} y[n] \xrightarrow{\downarrow M} w[n] = y[nM] \]

Interchange filter with decimation

\[x[n] \xrightarrow{\downarrow M} \xrightarrow{z^{-1}} \xrightarrow{\downarrow M} \xrightarrow{z^{-1}} \xrightarrow{\downarrow M} \xrightarrow{z^{-1}} \]

Computation:
Each Filter: \(\frac{N}{M} \times \frac{1}{M} \) mult/unit time
Total: \(\frac{N}{M} \) mult/unit time

what about interpolation?
Multirate FilterBank

- $h_0[n]$ is low-pass, $h_1[n]$ is high-pass
- Often $h_1[n] = e^{j\pi n} h_0[n]$ or $H_1(e^{j\omega}) = H_0(e^{j(\omega - \pi)})$
Subtleties in Time-Freq Tiling

• Assume h_0, h_1 are ideal low, high pass filters
Subtleties in Time-Freq Tiling

• Assume h_0, h_1 are ideal low, high pass filters.

\[
\begin{align*}
 x[n] & \xrightarrow{h_0[n]} \downarrow 2 \xrightarrow{h_1[n]} \downarrow 2 \\
 X(e^{j\omega}) & \text{Frequency domain representation}
\end{align*}
\]
Subtleties in Time-Freq Tiling

- Assume h_0, h_1 are ideal low, high pass filters

Mathematical expressions and diagrams illustrating the process of signal processing through ideal low and high pass filters, followed by downsampling operations.
Subtleties in Time-Freq Tiling

- Assume h_0, h_1 are ideal low, high pass filters
Perfect Reconstruction Ideal Filters

\[\mathcal{G}_0[n] \quad \mathcal{G}_1[n] \quad y[n] \]

\[2 \uparrow \longrightarrow \mathcal{G}_0[n] \quad \mathcal{G}_1[n] \longrightarrow 2 \uparrow \quad y[n] \]
Non ideal LP and HP Filters

\[x[n] \rightarrow h_0[n] \rightarrow \downarrow 2 \rightarrow h_1[n] \rightarrow \downarrow 2 \rightarrow X(e^{j\omega}) \]

\[H_0(e^{j\omega}) \quad H_1(e^{j\omega}) \]
Perfect Reconstruction non-Ideal Filters

\[x[n] \xrightarrow{h_0[n]} \downarrow 2 \xrightarrow{h_1[n]} \downarrow 2 \xrightarrow{\text{Stuff}} 2 \uparrow \xrightarrow{2 \uparrow} g_0[n] \]

\[X(e^{j\omega}) \xrightarrow{\text{analysis}} \cdot G_0(e^{j\omega}) \xrightarrow{\text{synthesis}} y[n] \]

\[= X(e^{j\omega}) + \cdot G_1(e^{j\omega}) \]
Perfect Reconstruction non-Ideal Filters

\[Y(e^{j\omega}) = \frac{1}{2} \left[G_0(e^{j\omega})H_0(e^{j\omega}) + G_1(e^{j\omega})H_1(e^{j\omega}) \right] X(e^{j\omega}) \]

\[+ \frac{1}{2} \left[G_0(e^{j\omega})H_0(e^{j(\omega - \pi)}) + G_1(e^{j\omega})H_1(e^{j(\omega - \pi)}) \right] X(e^{j(\omega - \pi)}) \]

\text{need to cancel!}

M. Lustig, EECS UC Berkeley
Quadrature Mirror Filters - perfect recon

\[
H_1(e^{j\omega}) = H_0(e^{j(\omega - \pi)})
\]
\[
G_0(e^{j\omega}) = 2H_0(e^{j\omega})
\]
\[
G_1(e^{j\omega}) = -2H_1(e^{j\omega})
\]
Quadrature Mirror Filters - perfect recon

\[x[n] \xrightarrow{h_0[n], h_1[n]} \xrightarrow{\downarrow 2} \text{Stuff} \xrightarrow{\uparrow 2} y[n] \]

\[H_1(e^{j\omega}) = H_0(e^{j(\omega - \pi)}) \]
\[G_0(e^{j\omega}) = 2H_0(e^{j\omega}) \]
\[G_1(e^{j\omega}) = -2H_1(e^{j\omega}) \]

Example Haar:

\[h_0[n] \xrightarrow{} g_0[n] \]
\[h_1[n] \xrightarrow{} g_1[n] \]
\begin{align*}
e_{00} &= h_0[2n] \\
e_{01} &= h_0[2n + 1] \\
e_{10} &= h_1[2n] = e^{j2\pi n} h_0[2n] = e_{00}[n] \\
e_{11} &= h_1[2n + 1] = e^{j2\pi n} e^{j\pi} h_0[2n + 1] = -e_{01}[n]
\end{align*}
Polyphase Filter-Bank

Analysis

\[x[n] \xrightarrow{z^{-1}} \]

\[
\begin{align*}
e_{00} &= h_0[2n] \\
e_{01} &= h_0[2n + 1] \\
e_{10} &= e_{00}[n] \\
e_{11} &= -e_{01}[n]
\end{align*}
\]
Polyphase Filter-Bank

Analysis

- $x[n]$ is input.
- z^{-1} is a delay operator.
- $e_{00}[n]$, $e_{01}[n]$, $e_{10}[n]$, $e_{11}[n]$ are output signals.

Equations:

- $e_{00} = h_0[2n]$
- $e_{01} = h_0[2n + 1]$
- $e_{10} = e_{00}[n]$
- $e_{11} = -e_{01}[n]$