Ideal Anti-Aliasing

\[x_c(t) \quad \text{ADC A/D} \]

\[x_s(j\Omega) \quad \text{sampler} \quad x[n] = x_s(nT) \quad \text{Quantizer} \]

\[X_c(j\Omega) \quad \Omega_s < 2\Omega_N \]

\[X_s(j\Omega) \quad \text{and} \quad \Omega_s < 2\Omega_N \]

\[X_s(j\Omega) H_{\text{LP}}(j\Omega) \quad \text{and} \quad \Omega_s < 2\Omega_N \]

Non Ideal Anti-Aliasing

\[X_c(j\Omega) H_{\text{LP}}(j\Omega) \]

- Problem: Hard to implement sharp analog filter
- Tradeoff:
 - Crop part of the signal
 - Suffer from noise and interference (See lab II!)

Oversampled ADC

\[x_c(t) \quad \text{ADC A/D} \]

\[x_s(j\Omega) \quad \text{sampler} \quad x[n] = x_s(nT) \quad \text{Quantizer} \]

\[X_s(j\Omega) \quad \Omega_s < 2\Omega_N \]

\[X_s(j\Omega) H_{\text{LP}}(j\Omega) \quad \text{and} \quad \Omega_s < 2\Omega_N \]

\[X_s(j\Omega) \quad \text{after oversampling x2} \]

\[\hat{X}(e^{j\omega}) \quad \text{aliased noise} \]

\[\Omega_N \]

\[\Omega_s/2 \]
Oversampled ADC

after oversampling x2

\[\hat{X}(e^{j\omega}) \]

\(T \)

after digital LP and decimation

\[\hat{X}_d(e^{j\omega}) \]

\(T_d = MT \)

Sampling and Quantization

\[x_c(t) \]

\[\frac{C}{D} \]

\[x[n] = x_c(nT) \]

\[\hat{x}[n] \]

Quantization Error

\[x[n] \]

\[\hat{x}[n] = x[n] + e[n] \]

\[e[n] \]

\[-\Delta/2 \leq e[n] < \Delta/2 \]

\[-X_m - \Delta/2 < x[n] \leq (X_m - \Delta/2) \]

Noise Model for Quantization Error

\[\Delta = \frac{2X_m}{2B+1} = \frac{X_m}{2^B} \]

\[\hat{x}[n] = X_m \hat{x}_B[n] \]

\[2X_m \]

\[\Delta \]

Quantization Noise

\[\sigma_e^2 = \frac{\Delta^2}{12} \]

\[\sigma_{\hat{x}}^2 = \frac{2^{-2B}X_m^2}{12} \text{ since } \Delta = 2^{-B}X_m \]

Assumptions:

- Model \(e[n] \) as a sample sequence of a stationary random process
- \(e[n] \) is not correlated with \(x[n] \), e.g., \(E[e[n]x[n]] = 0 \)
- \(e[n] \) not correlated with \(e[m] \), e.g., \(E[e[n]e[m]] = 0 \) \(m \neq n \)
 - \(e[n] \sim U[-\Delta/2, \Delta/2] \)
- Variance is: \(\sigma_e^2 = \frac{\Delta^2}{12} \text{, or } \sigma_{\hat{x}}^2 = \frac{2^{-2B}X_m^2}{12} \text{ since } \Delta = 2^{-B}X_m \)
- Assumptions work well for signals that change rapidly, are not clipped and for small \(\Delta \)
SNR of Quantization Noise

For uniform B+1 bits quantizer:

\[SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2} \right) \]

\[= 10 \log_{10} \left(\frac{12 \cdot 2^B \sigma_x^2}{X_m^2} \right) \]

\[SNR_Q = 6.02B + 10 \cdot 8 \cdot 20 \log_{10} \left(\frac{X_m}{\sigma_x} \right) \]

Quantizer range

\[\text{Quantizer range} \]

\[\text{rms of amp} \]

Improvement of 6dB with every bit

- The range of the quantization must be adapted to the rms amplitude of the signal
 - Tradeoff between clipping and noise!
 - Often use pre-amp
 - Sometimes use analog auto gain controller (AGC)
 - If \(\sigma_x = X_m/4 \) then \(SNR_Q \approx 6B - 1.25dB \)

so SNR of 90-96 dB requires 16-bits (audio)

Energy of \(x_d[n] \) equals energy of \(x[n] \)
- No filtering of signal!

Quantization noise in Oversampled ADC

\[x_c(t) \xrightarrow{\text{C/D}} x[n] \rightarrow e[n] = x[n] + \epsilon[n] + \epsilon(t) \rightarrow \text{LPF} \xrightarrow{\omega_c} \text{downsampled} \rightarrow x_d[n] = x_d[n] + e_d[n] \rightarrow \Delta M \]

\[X_c(j\Omega) \xrightarrow{\text{LPF}} \tilde{X}(e^{j\Omega}) \xrightarrow{\text{downsampled}} \Delta M \]

\[X_d(e^{j\Omega}) = \tilde{X}(e^{j\Omega}) \]

\[\sigma_e^2 = \sigma^2/\Delta M \]

SNR in Oversampled ADC

\[SNR = 6.02B + 10 \cdot 8 \cdot 20 \log_{10} \left(\frac{X_m}{\sigma_x} \right) + 10 \log_{10} M \]

Energy of \(x_d[n] \) equals energy of \(x[n] \)

- No filtering of signal!

Practical ADC

\[x[n] = x(t)|_{t=nT} \rightarrow \text{sinc pulse generator} \rightarrow x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \text{sinc} \left(\frac{t-nT}{T} \right) \]

- Scaled train of sinc pulses
- Difficult to generate sinc ⇒ Too long!
Practical ADC

Zero-Order-Hold interpolation

\[x_0(t) = \sum_{n=-\infty}^{\infty} x[n] h_0(t - nT) = x_0(t) * x_s(t) \]

Taking a FT:

\[X(j\Omega) = H_0(j\Omega) X_s(j\Omega) \]
\[= H_0(j\Omega) \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\Omega - k\Omega_s)) \]

Ideally:

\[X_s(j\Omega) H_{LF}(j\Omega) \]

Practically:

\[X_s(j\Omega) H_0(j\Omega) \]

\[X_s(j\Omega) H_0(j\Omega) \]

Practically:

\[X_s(j\Omega) H_0(j\Omega) H_r(j\Omega) \]
Easier Implementation with Digital upsampling

\[x[n] \overset{\uparrow L}{\rightarrow} x_L[n] \overset{\text{LPP gain} = \frac{L}{L}}{\rightarrow} \]

Practically:

\[X_s(j\Omega) H_0(j\Omega) H_r(j\Omega) \]

...

M. Lustig, EECS UC Berkeley

Easier Implementation with Digital upsampling

...

easier implementing with analog components

Need analog components made of Nonobtainium

M. Lustig, EECS UC Berkeley