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EE123
Digital Signal Processing

Lecture 22
Lab 4: Frequency Calibration using GSM

Compressed Sensing
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Lab 4

• SDR crystal oscillator has often has offset
• Also drifts with temperature
• Cellphones do the same!

• GSM protocol has built
in synchronizations

http://sdrformariners.blogspot.com/2013/12/cooling.html
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GSM-850

• Frequencies 200KHz channels
–Uplink 824-849
–Downlink 869-849 

• TDMA: Time division multiple access



M. Lustig,  EECS UC Berkeley

GSM Frequency Correction Channel

• Pure frequency bursts @67.7083KHz
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How to find GSM Base Stations
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Spectrogram of GSM



M. Lustig,  EECS UC Berkeley

How to find Bursts?

• Use Bandpass filter and compute 
magnitude of result
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How to find Bursts?

• Can process at lower rate!
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Detect Bursts and Compute Frequency

• Detect bursts at low rate sampling
• Compute frequency
• Calculate the original frequency!



Compressive Sampling

Q: What is the rate you need to sample at?
A: At least Nyquist!

0 T
Anything



Q: What is the rate you need to sample at?
A: Maybe less than Nyquist....

Compressive Sampling

0 T
Something



You are given samples of an harmonic function. You 
know there’s only 1 frequency, but you don’t know 
which.

1. Is it Nyquist sampled?

2. How would you reconstruct?



You collect half the samples at half the rate

1. Is it Nyquist sampled?

2. Can you reconstruct?



You collect half the samples at half the rate

1. What’s the problem? 

2. How can it be resolved?



Non-uniform sampling solves the ambiguity!

1. What if there are 2 frequencies? What would you do?



Images are compressible
Standard approach: First collect, then compress
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Image Compression 
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Compressed Sensing
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Medical images are compressible
Standard approach: First collect, then compress
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Compressed Sensing
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*Courtesy, M. Uecker, J Frahm Max Planck
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