Linear Filter Design

- Used to be an art
 - Now, lots of tools to design optimal filters
- For DSP there are two common classes
 - Infinite impulse response IIR
 - Finite impulse response FIR
- Both classes use finite order of parameters for design
- We will cover FIR designs, briefly mention IIR

What is a linear filter

- Attenuates certain frequencies
- Passes certain frequencies
- Effects both \textbf{phase} and \textbf{magnitude}
- IIR
 - Mostly non-linear phase response
 - Could be linear over a range of frequencies
- FIR
 - Much easier to control the phase
 - Both non-linear and linear phase

FIR Design by Windowing

- Given desired frequency response, $H_d(e^{j\omega})$, find an impulse response
 $$h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$

- Obtain the M^{th} order causal FIR filter by truncating/windowing it
 $$h[n] = \begin{cases}
 h_d[n]w[n] & 0 \leq n \leq M \\
 0 & \text{otherwise}
 \end{cases}$$

FIR Design by Windowing

- We already saw that, $H(e^{j\omega}) = H_d(e^{j\omega}) \ast W(e^{j\omega})$
- For Boxcar (rectangular) window
 $$W(e^{j\omega}) = e^{-j\omega \frac{M}{2}} \frac{\sin(w(M + 1)/2)}{\sin(w/2)}$$

FIR Design by Windowing

1. pass-band ripple
2. ideal
3. transition width
4. stop-band ripple
Tapered Windows

<table>
<thead>
<tr>
<th>Name(s)</th>
<th>Definition</th>
<th>MATLAB Command</th>
<th>Graph (M=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hana</td>
<td>$\left[1 - \frac{\cos\left(\frac{\pi n}{M}\right)}{\cos\left(\frac{\pi}{2}\right)}\right]$</td>
<td>hamming(M+1)</td>
<td></td>
</tr>
<tr>
<td>Hannig</td>
<td>$\left[1 - \frac{\cos\left(\frac{\pi n}{M}\right)}{\cos\left(\frac{\pi}{2}\right)}\right]$</td>
<td>hanning(M+1)</td>
<td></td>
</tr>
<tr>
<td>Hamming</td>
<td>$\left[1 - \frac{\cos\left(\frac{\pi n}{M}\right)}{\cos\left(\frac{\pi}{2}\right)}\right]$</td>
<td>hann(M+1)</td>
<td></td>
</tr>
</tbody>
</table>

M. Lustig, EECS UC Berkeley

Tradeoff - Ripple vs Transition Width

<table>
<thead>
<tr>
<th>Example: FIR Low-Pass Filter Design</th>
</tr>
</thead>
</table>

- **FIR Filter Design**
 - Choose a desired frequency response $H_d(e^{j\omega})$
 - non causal (zero-delay), and infinite imp. response
 - If derived from C.T, choose T and use:
 $$H_d(e^{j\omega}) = H_c(j\frac{\omega}{T})$$
 - **Window:**
 - Length $M+1 \leftrightarrow$ effect transition width
 - Type of window \leftrightarrow transition-width/ripple
 - Modulate to shift impulse response
 $$H_d(e^{j\omega})e^{-j\omega \frac{M}{2}}$$

- **Example:** FIR Low-Pass Filter Design
 - $H_d(e^{j\omega}) = \begin{cases} 1 & |\omega| \leq \omega_c \\ 0 & \text{otherwise} \end{cases}$
 - Choose $M \Rightarrow$ Window length and set
 $$H_1(e^{j\omega}) = H_d(e^{j\omega})e^{-j\omega \frac{M}{2}}$$
 - $h_1[n]$ and $H_1[n]$

 M. Lustig, EECS UC Berkeley

FIR Filter Design

- **FIR Filter Design**
 - Determine truncated impulse response $h_1[n]$
 $$h_1[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega})e^{-j\omega\frac{M}{2}} e^{j\omega n} \, d\omega$$
 $$0 \leq n \leq M$$
 otherwise
 - Apply window
 $$h_w[n] = w[n]h_1[n]$$
 - **Check:**
 - Compute $H_w(e^{j\omega})$, if does not meet specs increase M or change window

M. Lustig, EECS UC Berkeley

Example: FIR Low-Pass Filter Design

- The result is a windowed sinc function
 $$h_w[n] = w[n]h_1[n]$$
 - **High Pass Design:**
 - Design low pass $h_0[n]$
 - Transform to $h_w[n] / |I|^s$
 - **General bandpass**
 - Transform to $2h_w[n] / \cos(\omega_0 n)$

M. Lustig, EECS UC Berkeley
Characterization of Filter Shape

Time-Bandwidth Product, a unitless measure
\[T(BW) = (M+1)\frac{\omega}{2\pi} \]
also, total # of zero crossings

Larger TBW ⇒ More of the “sinc” function
hence, frequency response looks more like a rect function

Frequency Response Profile

Q: What are the lengths of these filters in samples?

\[2 = (M+1)\frac{(\pi/6)}{(2\pi)} \Rightarrow M=23 \]
\[12 = (M+1)\frac{(\pi)}{(2\pi)} \Rightarrow M=23 \]

Note that transition is the same!

Optimal Filter Design

• Window method
 – Design Filters heuristically using windowed sinc functions

• Optimal design
 – Design a filter \(h[n] \) with \(H(e^{j\omega}) \)
 – Approximate \(H_d(e^{i\omega}) \) with some optimality criteria - or satisfies specs.