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EE123
Digital Signal Processing

Lecture 6
Properties of DFT

some of the material was based on slides by J.M. Kahn M. Lustig, EECS UC Berkeley




Announcements

- HW1 solutions posted -- self grading due Tue
- HW2 + due Friday,

- Homework Slip policy (lowest grade
homework will be dropped)

* SDR giveaway Thursday in lab
* Finish reading Ch. 8, start Ch. 9

» ham radio licensing lecture || W 6:30-8pm
Cory 521

M. Lustig, EECS UC Berkeley




Cool things DSP

 Cosmic Microwave

Background radiation

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

M. Lustig, EECS UC Berkeley




Last Time

» Discrete Fourier Transform
— Similar to DFS
— Sampling of the DTFT (subtlties....more later)
— Properties of the DFT

- Today
— Linear convolution with DFT

— Overlap-Add / Save method for fast
convolutions

M. Lustig, EECS UC Berkeley




Circular Convolution Sum

* Circular Convolution:

r1[n] @ z2[n Z r1m —m))N|

for two signals of length N

* Note: Circular convolution is commutative

r2\n| @ z1|n| = z1[n| @ z2(n|

M. Lustig, EECS UC Berkeley




Compute Circular Convolution Sum

r1|n]

L))
o @
v

o 1 2 3 4

M. Lustig, EECS UC Berkeley




Compute Circular Convolution Sum
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Circular “flip’
multiply and add
Here: y[O]
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Compute Circular Convolution Sum
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Equivalent periodic convolution over a period

yln] = z1[n] @ x2[n] =7

M. Lustig, EECS UC Berkeley
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Properties of DFT

 Circular Convolution: Let x1[n], x2[n] be length N

r1[n] @ w2(n| < X1lk| - Xo|k]

Very usefullll ( for linear convolutions with DFT)

» Multiplication: Let x1[n], x2[n] be length N

il - aln] 4 X[ ® Ko

M. Lustig, EECS UC Berkeley




Linear Convolution

* Next....

— Using DFT, circular convolution is easy

— But, linear convolution is useful, not circular

— So, show how to perform linear convolution
with circular convolution

— Used D

T to do linear convolution

M. Lustig, EECS UC Berkeley




Linear Convolution

- We start with two non-periodic sequences:
zn] 0<n<L-1
hln] 0<n<P-1
for example x[n] is a signal and h[n] an impulse response of a filter

» We want to compute the linear
convolution:

y\n| = x|n| Zaj

y[n] is nonzero for 0 < n < L+P-2 with length M=L+P-1

* Requires L-P multiplications

M. Lustig, EECS UC Berkeley




Linear Convolution via Circular Convolution

 Zero-pad x[n] by P-1 zeros

_J zln] 0<n<L-1
Tl =10 L<n<L4P-2

» Zero-pad h[n] by L-1 zeros
h | Rn] 0<n<<P-1
=100 P<n<ri+P-2

* Now, both sequences are of length
M=L+P-1

M. Lustig, EECS UC Berkeley




Linear Convolution via Circular Convolution

* Now, both sequences are of length
M=L+P-1

* We can now compute the linear
convolution using a circular one with
length M = L+P-1

| inear convolution via circular

ot it — )Xl @ hepln] 0 <n< M —1
ik = debetnl = {O otherwise

M. Lustig, EECS UC Berkeley




Example
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M=L+P-1=8
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Example
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M=L+P-1=8
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Example

M. Lustig, EECS UC Berkeley




Linear Convolution using DFT

* In practice we can implement a circulant
convolution using the DFT property:

w[n] «h[n] = wup[n] @ hapln)
= DFT ' {DFT {x,[n]} - DFT {hyp[n]}}
for0 =n <M-1, M=L+P-1
- Advantage: DFT can be computed with
NlogaN complexity (FFT algorithm later!)

» Drawback: Must wait for all the samples
-- huge delay -- incompatible with real-

M. Lustig, EECS UC Berkeley




Block Convolution

* Problem:

— An input signal x[n], has very long length
(could be considered infinite)

— An impulse response h[n] has length P

— We want to take advantage of DFT/FFT and
compute convolutions in blocks that are
shorter than the signal

» Approach:
— Break the signal into small blocks
— Compute convolutions
— Combine the results

M. Lustig, EECS UC Berkeley




Block Convolution

Example:

h[n] Impulse response, Length P=6

----------
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x[n] Input Signal, Length P=33
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y[n] Output Signal, Length P=38
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Overlap-Add Method

- Decompose into non-overlapping segments

T |n] =<

\

zn] rL<n<(r+1)L
0 otherwise

* The input signal is the sum of segments

zln] = Y x:[n]

M. Lustig, EECS UC Berkeley




Overlap-Add Method

* The output is:

xn| = Z T, [N

y[n] = z[n] « h[n] = Y z.[n] * h[n)

» Each output segment x,/n/*h/n/ is length

N=L+P-1

M. Lustig, EECS UC Berkeley




Overlap-Add Method

» We can compute x,/n/*h/n] using linear
convolution

» Using the DFT:
— Zero-pad x,/n/ to length N

— Zero-pad h/n] to length N and
compute DFTn{%z[n]} (only once) WHY?

— Compute
z,[n] * h[n] = DFT' {DFT{x, .,[n]} - DFT{h.,[n]}}

* Neighboring outputs overlap by P-1

— Add overlaps to get final sequence

M. Lustig, EECS UC Berkeley




Example of overlap and add:
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Overlap-Save Method

» Basic idea:
» Split input into (P-1) overlapping segments
with length L+P-1

zin] rL<n<((r+1)L+P
0 otherwise

* Perform circular convolution in each
segment, and keep the L sample portion
which is a valid linear convolution

M. Lustig, EECS UC Berkeley




Recall:
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Valid linear convolution!
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Example of overlap and save:
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