

 EE123

 EE123

Digital Signal Processing

Lecture 6 Properties of DFT

Announcements

- HW1 solutions posted -- self grading due Tue
- HW2 + due Friday,
- Homework Slip policy (lowest grade homework will be dropped)
- SDR giveaway Thursday in lab
- Finish reading Ch. 8, start Ch. 9
- ham radio licensing lecture II W 6:30-8pm Cory 521

Cool things DSP

- Cosmic Microwave Background radiation

- Discrete Fourier Transform
- Similar to DFS
- Sampling of the DTFT (subtlties....more later)
- Properties of the DFT
- Today
- Linear convolution with DFT
- Overlap-Add / Save method for fast convolutions

Circular Convolution Sum

- Circular Convolution:

$$
x_{1}[n] ® x_{2}[n] \triangleq \sum_{m=0}^{N-1} x_{1}[m] x_{2}\left[((n-m))_{N}\right]
$$

for two signals of length N

- Note: Circular convolution is commutative

$$
x_{2}[n] \text { ® } n>x_{1}[n]=x_{1}[n] \text { ® } x_{2}[n]
$$

Compute Circular Convolution Sum

Compute Circular Convolution Sum

Circular 'flip' multiply and add

$$
y[n]=x_{1}[n] \text { ©7 } x_{2}[n]=?
$$ Here: y[0]

Compute Circular Convolution Sum

Equivalent periodic convolution over a period

$$
y[n]=x_{1}[n] \text { ©7) } x_{2}[n]=?
$$

Result

$$
y[n]=x_{1}[n] \text { ©7) } x_{2}[n]=?
$$

Properties of DFT

- Circular Convolution: Let $x 1[n], x 2[n]$ be length N

$$
x_{1}[n] \text { ® } x_{2}[n] \leftrightarrow X_{1}[k] \cdot X_{2}[k]
$$

Very useful!!! (for linear convolutions with DFT)

- Multiplication: Let $x 1[n], x 2[n]$ be length N

$$
x_{1}[n] \cdot x_{2}[n] \leftrightarrow \frac{1}{N} X_{1}[k] @ X_{2}[k]
$$

- Next....
- Using DFT, circular convolution is easy
- But, linear convolution is useful, not circular
- So, show how to perform linear convolution with circular convolution
- Used DFT to do linear convolution

Linear Convolution

- We start with two non-periodic sequences:

$$
\begin{array}{ll}
x[n] & 0 \leq n \leq L-1 \\
h[n] & 0 \leq n \leq P-1
\end{array}
$$

for example $x[n]$ is a signal and $h[n]$ an impulse response of a filter

- We want to compute the linear convolution:

$$
y[n]=x[n] * h[n]=\sum_{m=0}^{L-1} x[m] h[n-m]
$$

$\mathrm{y}[\mathrm{n}]$ is nonzero for $0 \leq \mathrm{n} \leq \mathrm{L}+\mathrm{P}-2$ with length $\mathbf{M}=\mathrm{L}+\mathrm{P}-\mathbf{1}$

- Requires L•P multiplications

Linear Convolution via Circular Convolution

- Zero-pad x[n] by P-1 zeros

$$
x_{\mathrm{zp}}[n]= \begin{cases}x[n] & 0 \leq n \leq L-1 \\ 0 & L \leq n \leq L+P-2\end{cases}
$$

- Zero-pad h[n] by L-1 zeros

$$
h_{\mathrm{zp}}[n]= \begin{cases}h[n] & 0 \leq n \leq P-1 \\ 0 & P \leq n \leq L+P-2\end{cases}
$$

- Now, both sequences are of length $\mathrm{M}=\mathrm{L}+\mathrm{P}-1$

Linear Convolution via Circular Convolution

- Now, both sequences are of length $\mathrm{M}=\mathrm{L}+\mathrm{P}-1$
- We can now compute the linear convolution using a circular one with length $\mathrm{M}=\mathrm{L}+\mathrm{P}-1$

Linear convolution via circular

$$
y[n]=x[n] * y[n]= \begin{cases}x_{\mathrm{zp}}[n] ® h_{\mathrm{zp}}[n] & 0 \leq n \leq M-1 \\ 0 & \text { otherwise }\end{cases}
$$

Example

Example

Example

$$
\begin{gathered}
\mathrm{M}=\mathrm{L}+\mathrm{P}-\mathbf{1}=\mathbf{8} \\
y[n]=x_{1}[n] \text { (8) } x_{2}[n]=x_{1}[n] * x_{2}[n]
\end{gathered}
$$

Linear Convolution using DFT

- In practice we can implement a circulant convolution using the DFT property:

$$
\begin{aligned}
& x[n] * h[n]=x_{\mathrm{zp}}[n] @ h_{\mathrm{zp}}[n] \\
&=\mathcal{D F} \mathcal{T}^{-1}\left\{\mathcal{D F \mathcal { F }}\left\{x_{\mathrm{zp}}[n]\right\} \cdot \mathcal{D F} \mathcal{T}\left\{h_{\mathrm{zp}}[n]\right\}\right\} \\
& \text { for } 0 \leq \mathrm{n} \leq \mathrm{M}-1, \mathrm{M}=\mathrm{L}+\mathrm{P}-1
\end{aligned}
$$

- Advantage: DFT can be computed with $\mathrm{Nlog}_{2} \mathrm{~N}$ complexity (FFT algorithm later!)
- Drawback: Must wait for all the samples -- huge delay -- incompatible with real-

Block Convolution

- Problem:
- An input signal $x[n]$, has very long length (could be considered infinite)
- An impulse response $h[n]$ has length P
- We want to take advantage of DFT/FFT and compute convolutions in blocks that are shorter than the signal
- Approach:
- Break the signal into small blocks
- Compute convolutions
- Combine the results

Block Convolution

Example:

$\mathrm{h}[\mathrm{n}]$ Impulse response, Length $\mathrm{P}=6$
PTPPTP

Overlap-Add Method

- Decompose into non-overlapping segments

$$
x_{r}[n]=\left\{\begin{array}{lr}
x[n] & r L \leq n<(r+1) L \\
0 & \text { otherwise }
\end{array}\right.
$$

- The input signal is the sum of segments

$$
x[n]=\sum_{r=0}^{\infty} x_{r}[n]
$$

Overlap-Add Method

$$
x[n]=\sum_{r=0}^{\infty} x_{r}[n]
$$

- The output is:

$$
y[n]=x[n] * h[n]=\sum_{r=0}^{\infty} x_{r}[n] * h[n]
$$

- Each output segment $x_{r}[n] * h[n]$ is length $\mathrm{N}=\mathrm{L}+\mathrm{P}-1$

Overlap-Add Method

- We can compute $x_{r}[n] * h[n]$ using linear convolution
- Using the DFT:
- Zero-pad $x_{r}[n]$ to length N
- Zero-pad $h[n]$ to length N and compute $\operatorname{DFT}_{N}\left\{h_{z p}[n]\right\} \quad$ (only once) WHY?
- Compute
$x_{r}[n] * h[n]=\operatorname{DFT}^{-1}\left\{\operatorname{DFT}\left\{x_{r, z p}[n]\right\} \cdot \operatorname{DFT}\left\{h_{z p}[n]\right\}\right\}$
- Neighboring outputs overlap by P-1
- Add overlaps to get final sequence

Example of overlap and add:

Overlap-Save Method

- Basic idea:
- Split input into (P-1) overlapping segments with length L+P-1

$$
x_{r}[n]=\left\{\begin{array}{lr}
x[n] & r L \leq n<(r+1) L+P \\
0 & \text { otherwise }
\end{array}\right.
$$

- Perform circular convolution in each segment, and keep the L sample portion which is a valid linear convolution

Recall:

Example of overlap and save:

