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EE123
Digital Signal Processing

Lecture 6
Properties of DFT 

some of the material was based on slides by J.M. Kahn
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Announcements

• HW1 solutions posted -- self grading due Tue
• HW2   +  due Friday, 
• Homework Slip policy (lowest grade 

homework will be dropped)

• SDR giveaway Thursday in lab
• Finish reading Ch. 8, start Ch. 9

• ham radio licensing lecture II W 6:30-8pm 
Cory 521
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Cool things DSP

• Cosmic Microwave
Background radiation
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Last Time

• Discrete Fourier Transform
– Similar to DFS
– Sampling of the DTFT (subtlties....more later)
– Properties of the DFT

• Today
– Linear convolution with DFT
– Overlap-Add / Save method for fast 

convolutions 
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Circular Convolution Sum

• Circular Convolution:

for two signals of length N

x1[n]�N x2[n]
�
=

N�1X

m=0

x1[m]x2[((n�m))N ]

x2[n]�N x1[n] = x1[n]�N x2[n]

• Note: Circular convolution is commutative



x1[n]

x2[n]

y[n] = x1[n] �7 x2[n] =?
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Compute Circular Convolution Sum

n0 1 2 3 4

1

n0 1 2

1

5 6

3



x1[n]

x2[n]
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Compute Circular Convolution Sum

n0 1 2 3 4

1

n0 1 2

1

5 6

3 4 5 6

Circular ‘flip’
multiply and add
Here: y[0]

y[n] = x1[n] �7 x2[n] =?



x1[n]

x2[n]
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Compute Circular Convolution Sum

n0 1 2 3 4

1

n0 1 2

1

5 6

3 4 5 6

Equivalent periodic convolution over a period

y[n] = x1[n] �7 x2[n] =?



M. Lustig,  EECS UC Berkeley

Result

n0 1 2 3 4

2

5 6

y[n] = x1[n] �7 x2[n] =?
4
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Properties of DFT

• Circular Convolution: Let x1[n], x2[n] be length N

• Multiplication: Let x1[n], x2[n] be length N

x1[n]�N x2[n] $ X1[k] ·X2[k]

x1[n] · x2[n] $
1

N

X1[k]�N X2[k]

Very useful!!! ( for linear convolutions with DFT)
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Linear Convolution

• Next....
– Using DFT, circular convolution is easy 
– But, linear convolution is useful, not circular
– So, show how to perform linear convolution 

with circular convolution 
– Used DFT to do linear convolution
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Linear Convolution

• We start with two non-periodic sequences:

• We want to compute the linear 
convolution:

• Requires L∙P multiplications

for example x[n] is a signal and h[n] an impulse response of a filter

x[n] 0  n  L� 1

h[n] 0  n  P � 1

y[n] = x[n] ⇤ h[n] =
L�1X

m=0

x[m]h[n�m]

y[n] is nonzero for 0 ≤ n ≤ L+P-2 with length M=L+P-1
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Linear Convolution via Circular Convolution

• Zero-pad x[n] by P-1 zeros

• Zero-pad h[n] by L-1 zeros

• Now, both sequences are of length 
M=L+P-1

xzp[n] =

⇢
x[n] 0  n  L� 1
0 L  n  L+ P � 2

hzp[n] =

⇢
h[n] 0  n  P � 1
0 P  n  L+ P � 2
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Linear Convolution via Circular Convolution

• Now, both sequences are of length 
M=L+P-1 

• We can now compute the linear 
convolution using a circular one with 
length M = L+P-1

Linear Convolution using the DFT

Both zero-padded sequences x
zp

[n] and h
zp

[n] are of length
M = L+ P � 1

We can compute the linear convolution x [n] ⇤ h[n] = y [n] by
computing circular convolution x

zp

[n]�M h
zp

[n]:

Linear convolution via circular

y [n] = x [n] ⇤ y [n] =
(
x
zp

[n]�M h
zp

[n] 0  n  M � 1

0 otherwise

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2012, EE123 Digital Signal Processing



x1[n]

x2[n]
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Example

n0 1 2 3 4

1

n0 1 2

1

3

L=5

P=4

M = L + P - 1 = 8



x1[n]

x2[n]
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Example

n0 1 2 3 4

1

n0 1 2

1

3

M = L + P - 1 = 8

6 75

4 6 75



x1[n]

x2[n]

y[n] = x1[n] �8 x2[n] = x1[n] ⇤ x2[n]
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Example

n0 1 2 3 4

1

n0 1 2

1

3

M = L + P - 1 = 8

6 75

4 6 75

Circular ‘flip’
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Linear Convolution using DFT

• In practice we can implement a circulant 
convolution using the DFT property:

• Advantage: DFT can be computed with 
Nlog2N complexity (FFT algorithm later!)

• Drawback: Must wait for all the samples 
-- huge delay -- incompatible with real-

x[n] ⇤ h[n] = xzp[n]�M hzp[n]

= DFT �1 {DFT {xzp[n]} · DFT {hzp[n]}}
for 0 ≤ n ≤ M-1, M=L+P-1
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Block Convolution

• Problem: 
– An input signal x[n], has very long length 

(could be considered infinite)
– An impulse response h[n] has length P
– We want to take advantage of DFT/FFT and 

compute convolutions in blocks that are 
shorter than the signal

• Approach:
– Break the signal into small blocks
– Compute convolutions
– Combine the results
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Block Convolution

Example:

0 10 20 30
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0

0.5

n

x[
n]

Input Signal, Length 33

0 10 20 30
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0
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n]
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0 10 20 30

-0.5

0
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n

y[
n]

Linear Convolution, Length 38
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Block Convolution

Example:
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Block Convolution

Example:
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h[n] Impulse response, Length P=6 

x[n] Input Signal, Length P=33 y[n] Output Signal, Length P=38 

Block Convolution

Example:
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Overlap-Add Method

•  Decompose into non-overlapping segments

• The input signal is the sum of segments

xr[n] =

⇢
x[n] rL  n < (r + 1)L

0 otherwise

x[n] =
1X

r=0

xr[n]
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Overlap-Add Method

• The output is:

• Each output segment xr[n]*h[n] is length 
N=L+P-1

x[n] =
1X

r=0

xr[n]

y[n] = x[n] ⇤ h[n] =
1X

r=0

xr[n] ⇤ h[n]
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Overlap-Add Method

• We can compute  xr[n]*h[n] using linear 
convolution

• Using the DFT:
– Zero-pad xr[n] to length N
– Zero-pad h[n] to length N and 

compute DFTN{hzp[n]}   (only once)        WHY?
– Compute

• Neighboring outputs overlap by P-1
– Add overlaps to get final sequence

xr[n] ⇤ h[n] = DFT�1 {DFT{xr,zp[n]} ·DFT{hzp[n]}}



Overlap-Add Method
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Block Convolution

Example:
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Block Convolution

Example:
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x0[n]

x1[n]

x2[n]

x[n] = x0[n]+x1[n]+x2[n] y[n] = y0[n]+y1[n]+y2[n]

x0[n]

x1[n]

x2[n]

Example of overlap and add:



M. Lustig,  EECS UC Berkeley

Overlap-Save Method

• Basic idea:
• Split input into (P-1) overlapping segments 

with length L+P-1 

• Perform circular convolution in each 
segment, and keep the L sample portion 
which is a valid linear convolution

xr[n] =

⇢
x[n] rL  n < (r + 1)L+ P

0 otherwise
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Recall:
x1[n]

x2[n]

n0 1 2 3 4

1

n0 1 2

1

5 6

3 4 5 6

n0 1 2 3 4

2

5 6

4
Valid linear convolution!



Overlap-Save Method
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Example of overlap and save:


