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PiFM/QRPi

• PI FM: 
http://www.icrobotics.co.uk/wiki/index.php/
Turning_the_Raspberry_Pi_Into_an_FM_Transmit
ter#Steps_to_play_sound:

• RPiTX:
https://github.com/F5OEO/rpitx

• WsprryPi:
https://github.com/JamesP6000/WsprryPi

• QRPi:
http://rfsparkling.com/qrpi/

• qtcsdr:
https://github.com/ha7ilm/qtcsdr
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stations that around the world that spotted a beacon 
from a raspberry pi at my home in the last 24 hours. 
The beacon transmits a 2min message every 10min 
putting out only 0.1 Watt of power!  
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Last Time

• Discrete Fourier Transform
– Linear convolution through circular
– Linear convolutions through DFT

• Overlap and add
• Overlap and save

• Today
– The Fast Fourier Transform 



Circular Convolution as Matrix Operation

Circular convolution:

h[n]�N x [n] =

2

6664

h[0] h[N � 1] · · · h[1]
h[1] h[0] h[2]

...
h[N � 1] h[N � 2] h[0]

3

7775

2

6664

x [0]
x [1]
...

x [N]

3

7775

= H
c

x

H
c

is a circulant matrix
The columns of the DFT matrix are Eigen vectors of circulant
matrices.
Eigen vectors are DFT coe�cients. How can you show?
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Proof in HW



Circular Convolution as Matrix Operation

Diagonalize:

W
N

H
c

W�1

n

=

2

64
H[0] 0 · · · 0
0 H[1] · · · 0
... 0 H[N � 1]

3

75

Right-multiply by W
N

W
N

H
c

=

2

64
H[0] 0 · · · 0
0 H[1] · · · 0
... 0 H[N � 1]

3

75W
N

Multiply both sides by x

W
N

H
c

x =

2

64
H[0] 0 · · · 0
0 H[1] · · · 0
... 0 H[N � 1]

3

75W
N

x
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Fast Fourier Transform Algorithms

We are interested in e�cient computing methods for the DFT
and inverse DFT:

X [k] =
N�1X

n=0

x [n]W kn

N

, k = 0, . . . ,N � 1

x [n] =
N�1X

k=0

X [k]W�kn

N

, n = 0, . . . ,N � 1

where
W

N

= e�j( 2⇡
N

).
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Recall that we can use the DFT to compute the inverse DFT:

DFT �1{X [k]} =
1

N
(DFT {X ⇤[k]})⇤

Hence, we can just focus on e�cient computation of the DFT.

Straightforward computation of an N-point DFT (or inverse
DFT) requires N2 complex multiplications.
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Fast Fourier transform algorithms enable computation of an
N-point DFT (or inverse DFT) with the order of just
N · log

2

N complex multiplications.
This can represent a huge reduction in computational load,
especially for large N.

N N2 N · log
2

N N

2

N·log
2

N

16 256 64 4.0
128 16,384 896 18.3
1,024 1,048,576 10,240 102.4
8,192 67,108,864 106,496 630.2
6⇥ 106 36⇥ 1012 135⇥ 106 2.67⇥ 105

* 6Mp image size
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Most FFT algorithms exploit the following properties of W kn

N

:

Conjugate Symmetry

W k(N�n)

N

= W�kn

N

= (W kn

N

)⇤

Periodicity in n and k :

W kn

N

= W k(n+N)

N

= W (k+N)n

N

Power:
W 2

N

= W
N/2
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Most FFT algorithms decompose the computation of a DFT
into successively smaller DFT computations.

Decimation-in-time algorithms decompose x [n] into
successively smaller subsequences.
Decimation-in-frequency algorithms decompose X [k] into
successively smaller subsequences.

We mostly discuss decimation-in-time algorithms here.

Assume length of x [n] is power of 2 ( N = 2⌫). If smaller
zero-pad to closest power.
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Decimation-in-Time Fast Fourier Transform

We start with the DFT

X [k] =
N�1X

n=0

x [n]W kn

N

, k = 0, . . . ,N � 1

Separate the sum into even and odd terms:

X [k] =
X

n even

x [n]W kn

N

+
X

n odd

x [n]W kn

N

These are two DFT’s, each with half of the samples.
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Decimation-in-Time Fast Fourier Transform

Let n = 2r (n even) and n = 2r + 1 (n odd):

X [k] =

(N/2)�1X

r=0

x [2r ]W 2rk

N

+

(N/2)�1X

r=0

x [2r + 1]W (2r+1)k

N

=

(N/2)�1X

r=0

x [2r ]W 2rk

N

+W k

N

(N/2)�1X

r=0

x [2r + 1]W 2rk

N

Note that:

W 2rk

N

= e�j( 2⇡
N

)(2rk) = e
�j

⇣
2⇡
N/2

⌘
rk

= W rk

N/2

Remember this trick, it will turn up often.
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Decimation-in-Time Fast Fourier Transform

Hence:

X [k] =

(N/2)�1X

r=0

x [2r ]W rk

N/2 +W k

N

(N/2)�1X

r=0

x [2r + 1]W rk

N/2

�

= G [k] +W k

N

H[k], k = 0, . . . ,N � 1

where we have defined:

G [k]
�

=

(N/2)�1X

r=0

x [2r ]W rk

N/2 ) DFT of even idx

H[k]
�

=

(N/2)�1X

r=0

x [2r + 1]W rk

N/2 ) DFT of odd idx
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Decimation-in-Time Fast Fourier Transform

An 8 sample DFT can then be diagrammed as

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

N/2 - Point 
DFT

N/2 - Point 
DFT

G[0]

G[1]

G[2]

G[3]

H[0]

H[1]

H[2]

H[3]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN
0

WN
1

WN
2

WN
3

WN
4

WN
5

WN
6

WN
7

E
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m
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Decimation-in-Time Fast Fourier Transform

Both G [k] and H[k] are periodic, with period N/2. For
example

G [k + N/2] =

(N/2)�1X

r=0

x [2r ]W r(k+N/2)
N/2

=

(N/2)�1X

r=0

x [2r ]W rk

N/2W
r(N/2)
N/2

=

(N/2)�1X

r=0

x [2r ]W rk

N/2

= G [k]

so

G [k + (N/2)] = G [k]

H[k + (N/2)] = H[k]
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Decimation-in-Time Fast Fourier Transform

The periodicity of G [k] and H[k] allows us to further simplify.
For the first N/2 points we calculate G [k] and W k

N

H[k], and
then compute the sum

X [k] = G [k] +W k

N

H[k] 8{k : 0  k <
N

2
}.

How does periodicity help for N

2

 k < N?
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Decimation-in-Time Fast Fourier Transform

X [k] = G [k] +W k

N

H[k] 8{k : 0  k <
N

2
}.

for N

2

 k < N:

W k+(N/2)
N

=?

X [k + (N/2)] =?
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Decimation-in-Time Fast Fourier Transform

X [k + (N/2)] = G [k]�W k

N

H[k]

We previously calculated G [k] and W k

N

H[k].

Now we only have to compute their di↵erence to obtain the second
half of the spectrum. No additional multiplies are required.
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Decimation-in-Time Fast Fourier Transform

The N-point DFT has been reduced two N/2-point DFTs,
plus N/2 complex multiplications. The 8 sample DFT is then:

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

N/2 - Point 
DFT

N/2 - Point 
DFT

G[k]

H[k]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN
0

WN
1

WN
2

WN
3

E
v
e

n
 S

a
m

p
le

s
O

d
d

 S
a

m
p

le
s

WN
k

-1

-1

-1

-1
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Decimation-in-Time Fast Fourier Transform

Note that the inputs have been reordered so that the outputs
come out in their proper sequence.
We can define a butterfly operation, e.g., the computation of
X [0] and X [4] from G [0] and H[0]:

G[0] X[0] =G[0] + WN
0 

H[0]

WN
0

-1

H[0] X[4] =G[0] - WN
0 

H[0]

This is an important operation in DSP.
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Decimation-in-Time Fast Fourier Transform

Still O(N2) operations..... What shall we do?

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

N/2 - Point 
DFT

N/2 - Point 
DFT

G[k]

H[k]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]
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Decimation-in-Time Fast Fourier Transform

We can use the same approach for each of the N/2 point
DFT’s. For the N = 8 case, the N/2 DFTs look like

x[0]

x[2]

x[4]

x[6]

N/4 - Point 
DFT

G[1]

G[2]

G[3]

N/4 - Point 
DFT

G[0]

WN/2
0

WN/2
1

-1

-1

*Note that the inputs have been reordered again.
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Decimation-in-Time Fast Fourier Transform

At this point for the 8 sample DFT, we can replace the
N/4 = 2 sample DFT’s with a single butterfly.
The coe�cient is

W
N/4 = W

8/4 = W
2

= e�j⇡ = �1

The diagram of this stage is then

-1

x[0]

x[4]

1

x[0] + x[4]

x[0] - x[4]
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Decimation-in-Time Fast Fourier Transform

Combining all these stages, the diagram for the 8 sample DFT is:

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

WN
0

WN
1

WN
2

WN
3

-1

-1

-1

-1

WN/2
0

WN/2
1

-1

-1

WN/2
0

WN/2
1

-1

-1

-1

-1

-1

-1

This the decimation-in-time FFT algorithm.
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Decimation-in-Time Fast Fourier Transform

In general, there are log
2

N stages of decimation-in-time.

Each stage requires N/2 complex multiplications, some of
which are trivial.

The total number of complex multiplications is (N/2) log
2

N.

The order of the input to the decimation-in-time FFT
algorithm must be permuted.

First stage: split into odd and even. Zero low-order bit first
Next stage repeats with next zero-lower bit first.
Net e↵ect is reversing the bit order of indexes
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Decimation-in-Time Fast Fourier Transform

This is illustrated in the following table for N = 8.

Decimal Binary Bit-Reversed Binary Bit-Reversed Decimal

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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Decimation-in-Frequency Fast Fourier Transform

The DFT is

X [k] =
N�1X

n=0

x [n]W nk

N

If we only look at the even samples of X [k], we can write k = 2r ,

X [2r ] =
N�1X

n=0

x [n]W n(2r)

N

We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.

X [2r ] =

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2r(n+N/2)
N
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Decimation-in-Frequency Fast Fourier Transform

But W 2r(n+N/2)
N

= W 2rn

N

WN

N

= W 2rn

N

= W rn

N/2.
We can then write

X [2r ] =

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2r(n+N/2)
N

=

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2rn

N

=

(N/2)�1X

n=0

(x [n] + x [n + N/2])W rn

N/2

This is the N/2-length DFT of first and second half of x [n]
summed.
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Decimation-in-Frequency Fast Fourier Transform

X [2r ] = DFT
N

2

{(x [n] + x [n + N/2])}

X [2r + 1] = DFT
N

2

{(x [n]� x [n + N/2])W n

N

}

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the N/2 DFTs, and the
N/4 DFT’s until we reach simple butterflies.
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Decimation-in-Frequency Fast Fourier Transform

The diagram for and 8-point decimation-in-frequency DFT is as
follows

x[0]

x[2]

x[1]

x[3]

x[4]

x[6]

x[5]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

WN
0

WN
1

WN
2

WN
3

-1

-1

-1

-1

WN/2
0

WN/2
1

-1

-1

-1

-1

-1

-1-1

-1

WN/2
0

WN/2
1

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.
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Non-Power-of-2 FFT’s

A similar argument applies for any length DFT, where the length
N is a composite number.
For example, if N = 6, a decimation-in-time FFT could compute
three 2-point DFT’s followed by two 3-point DFT’s

x[0]

x[1]

x[3]

x[4]

x[2]

x[5]

2-Point

DFT

2-Point

DFT

2-Point

DFT

3-Point

DFT

3-Point

DFT

W6
0

W6
1

W6
2

X[0]

X[2]

X[4]

X[1]

X[3]

X[5]
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Non-Power-of-2 FFT’s

Good component DFT’s are available for lengths up to 20 or so.
Many of these exploit the structure for that specific length. For
example, a factor of

WN/4
N

= e�j

2⇡
N

(N/4) = e�j

⇡
2 = �j Why?

just swaps the real and imaginary components of a complex
number, and doesn’t actually require any multiplies.
Hence a DFT of length 4 doesn’t require any complex multiplies.
Half of the multiplies of an 8-point DFT also don’t require
multiplication.
Composite length FFT’s can be very e�cient for any length that
factors into terms of this order.
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For example N = 693 factors into

N = (7)(9)(11)

each of which can be implemented e�ciently. We would perform

9⇥ 11 DFT’s of length 7
7⇥ 11 DFT’s of length 9, and
7⇥ 9 DFT’s of length 11
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Historically, the power-of-two FFTs were much faster (better
written and implemented).
For non-power-of-two length, it was faster to zero pad to
power of two.
Recently this has changed. The free FFTW package
implements very e�cient algorithms for almost any filter
length. Matlab has used FFTW since version 6
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FFT as Matrix Operation

0

BBBBBBBB@

X [0]

.

.

.

X [k]

.

.

.

X [N � 1]

1

CCCCCCCCA

=

0

BBBBBBBBBB@

W

00

N

· · · W

0n

N

· · · W

0(N�1)
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

W

k0

N

· · · W
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N

· · · W

k(N�1)

N

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

W

(N�1)0
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· · · W
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· · · W

(N�1)(N�1)

N

1

CCCCCCCCCCA

0

BBBBBBBB@

x[0]

.

.

.

x[n]

.

.

.

x[N � 1]

1

CCCCCCCCA

W
N

is fully populated ) N2 entries.

FFT is a decomposition of W
N

into a more sparse form:

F
N

=


I
N/2 D

N/2

I
N/2 �D

N/2

� 
W

N/2 0
0 W

N/2

� 
Even-Odd Perm.

Matrix

�

I
N/2 is an identity matrix. D

N/2 is a diagonal with entries

1, W
N

, · · · ,WN/2�1

N
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FFT as Matrix Operation
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N
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
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� 
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FFT as Matrix Operation

Example: N = 4

F
4

=

2

664

1 0 1 0
0 1 0 W

4

1 0 �1 0
0 1 0 �W

4

3

775

2

664

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

3

775

2

664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3

775
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Beyond  NlogN

• What if the signal x[n] has a k sparse frequency
– A. Gilbert et. al, “Near-optimal sparse Fourier representations via 

sampling
– H. Hassanieh et. al, “Nearly Optimal Sparse Fourier Transform”
– Others......

• O(K Log N) instead of O(N Log N)

From: http://groups.csail.mit.edu/netmit/sFFT/paper.html


