

Lecture 8
FFT II
Lab1

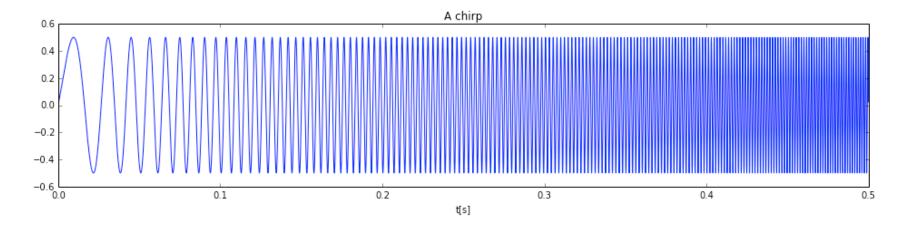
Announcements

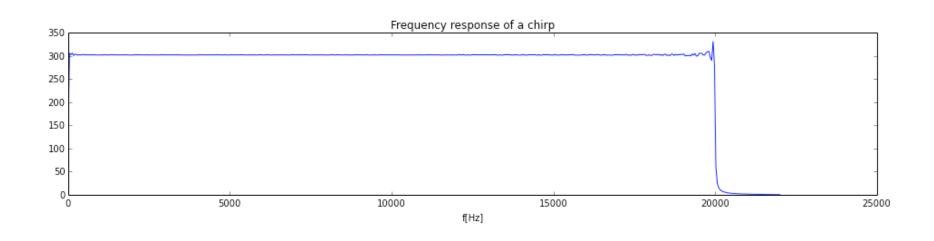
- Last time:
 - –Started FFT
- Today
 - Lab 1
 - Finish FFT
- Read Ch. 10.1-10.2

Midterm 1: Feb 22nd

Lab1

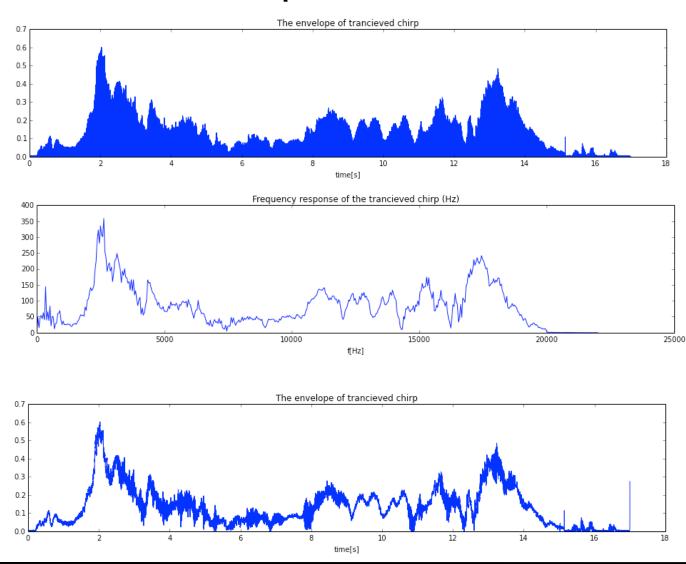
Generate a chirp





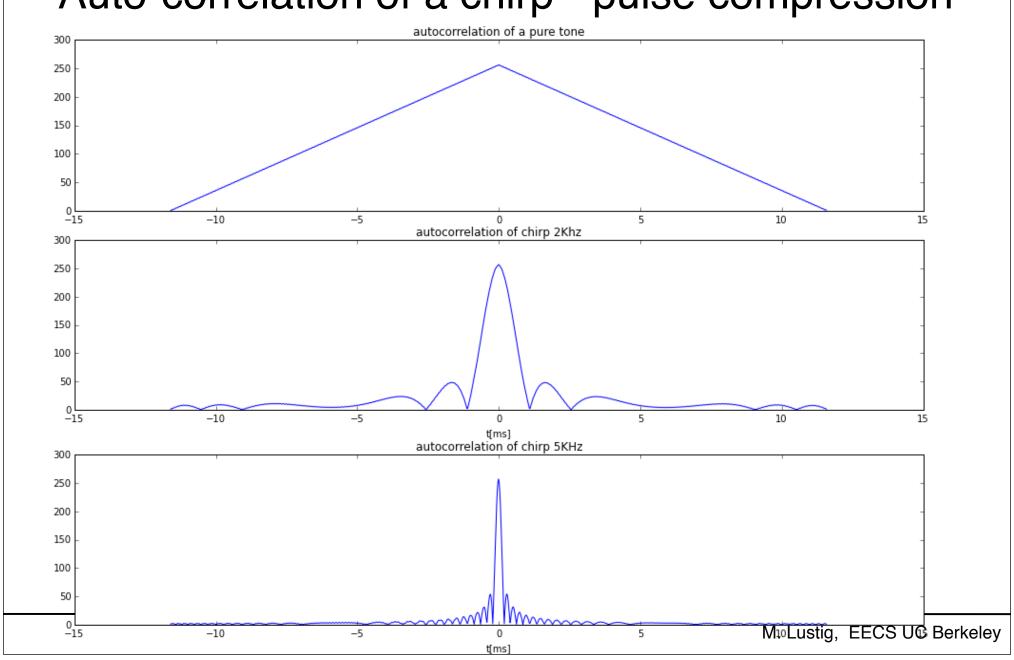
Lab1

Play and record chirp

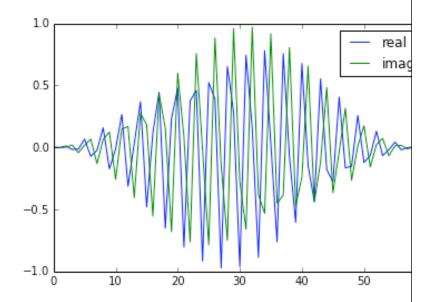


Lab 1

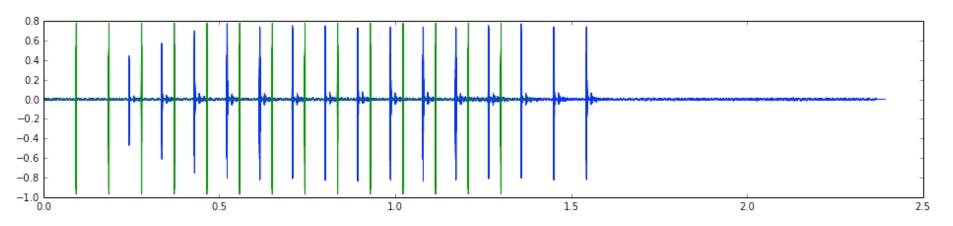
Auto-correlation of a chirp - pulse compression

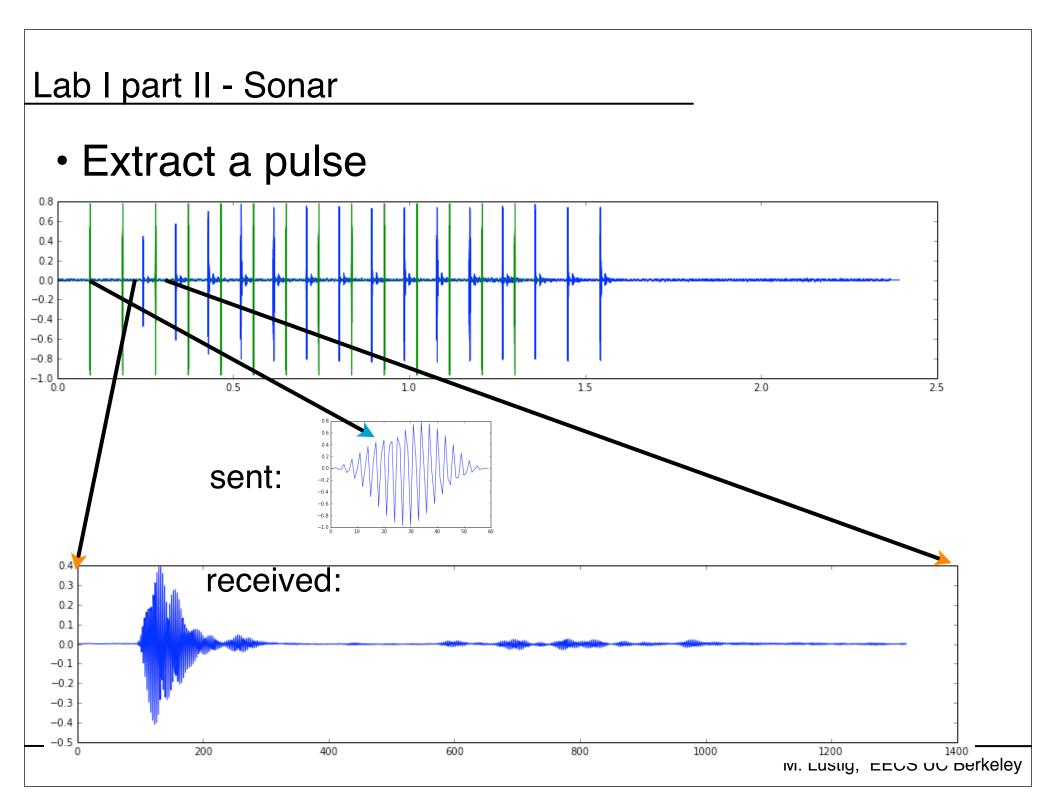


- Generate a pulse analytic
- Use real part for pulse train
- Transmit and record

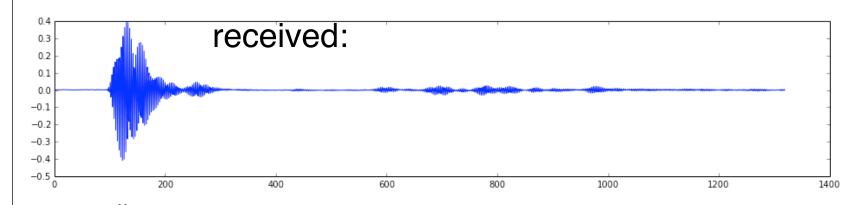


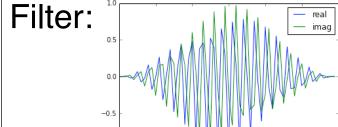
Sent and recorded:

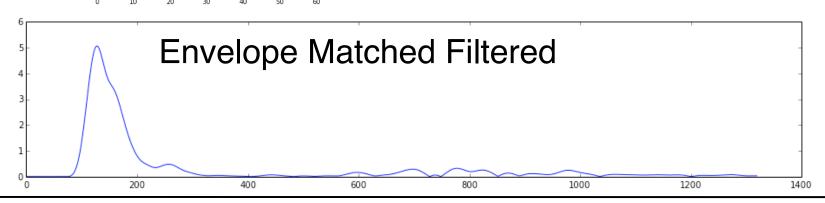




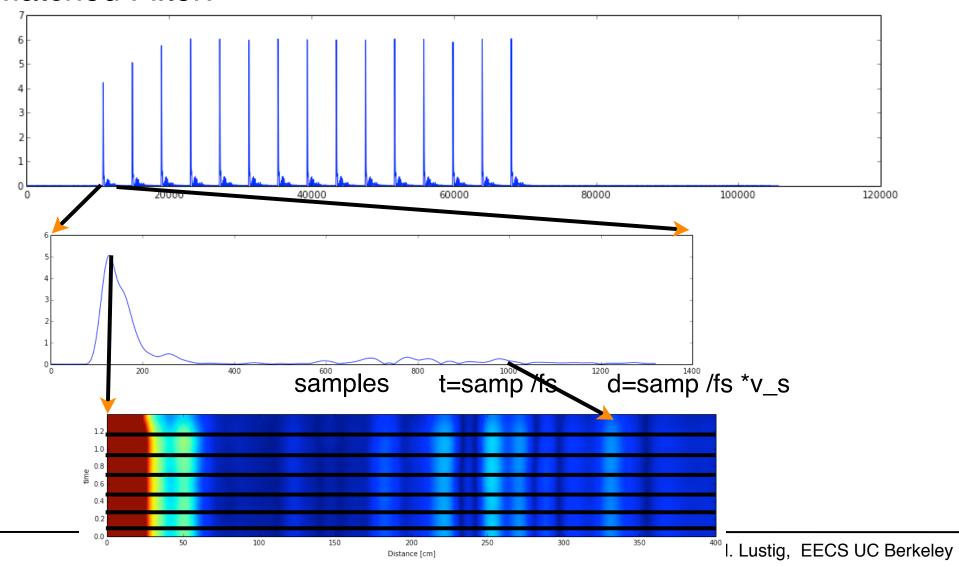
Matched Filtering



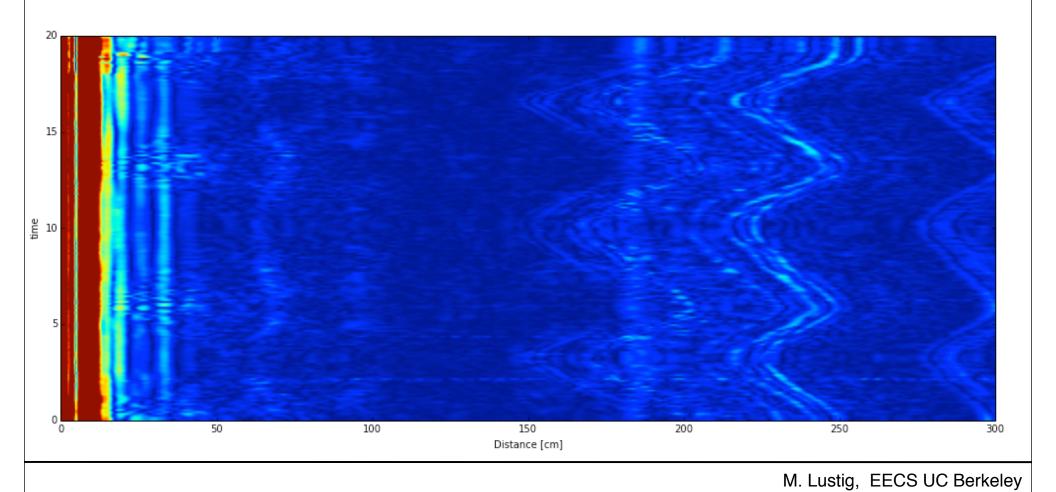




 Display echos vs distance Matched Filter:

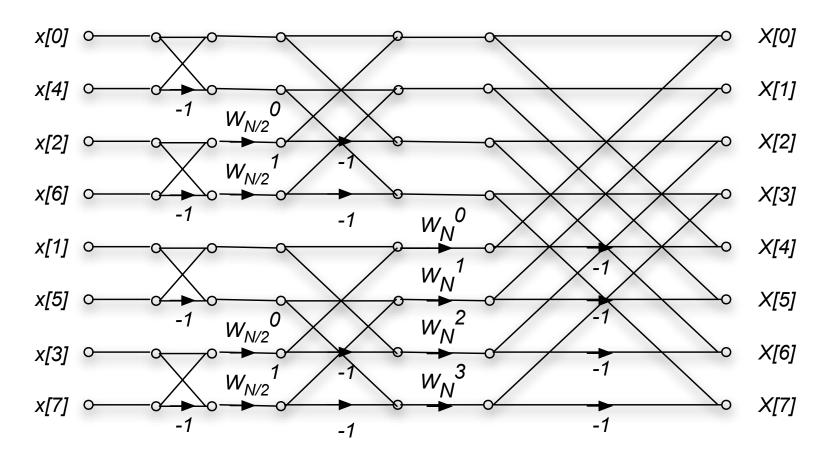


Real time demo



Decimation-in-Time Fast Fourier Transform

Combining all these stages, the diagram for the 8 sample DFT is:



This the decimation-in-time FFT algorithm.

Decimation-in-Time Fast Fourier Transform

- In general, there are $log_2 N$ stages of decimation-in-time.
- Each stage requires N/2 complex multiplications, some of which are trivial.
- The total number of complex multiplications is $(N/2) \log_2 N$.
- The order of the input to the decimation-in-time FFT algorithm must be permuted.
 - First stage: split into odd and even. Zero low-order bit first
 - Next stage repeats with next zero-lower bit first.
 - Net effect is reversing the bit order of indexes

Decimation-in-Time Fast Fourier Transform

This is illustrated in the following table for N=8.

Decimal	Binary	Bit-Reversed Binary	Bit-Reversed Decimal
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

The DFT is

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$

If we only look at the even samples of X[k], we can write k = 2r,

$$X[2r] = \sum_{n=0}^{N-1} x[n] W_N^{n(2r)}$$

We split this into two sums, one over the first N/2 samples, and the second of the last N/2 samples.

$$X[2r] = \sum_{n=0}^{(N/2)-1} x[n]W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2]W_N^{2r(n+N/2)}$$

But
$$W_N^{2r(n+N/2)} = W_N^{2rn} W_N^N = W_N^{2rn} = W_{N/2}^{rn}$$
. We can then write

$$X[2r] = \sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2r(n+N/2)}$$

$$= \sum_{n=0}^{(N/2)-1} x[n] W_N^{2rn} + \sum_{n=0}^{(N/2)-1} x[n+N/2] W_N^{2rn}$$

$$= \sum_{n=0}^{(N/2)-1} (x[n] + x[n+N/2]) W_{N/2}^{rn}$$

This is the N/2-length DFT of first and second half of x[n] summed.

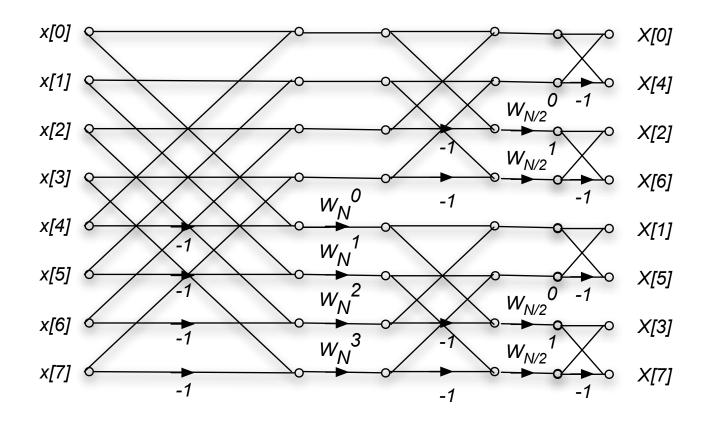
$$X[2r] = DFT_{\frac{N}{2}} \{(x[n] + x[n + N/2])\}$$

 $X[2r + 1] = DFT_{\frac{N}{2}} \{(x[n] - x[n + N/2]) W_N^n\}$

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the N/2 DFTs, and the N/4 DFT's until we reach simple butterflies.

The diagram for and 8-point decimation-in-frequency DFT is as follows



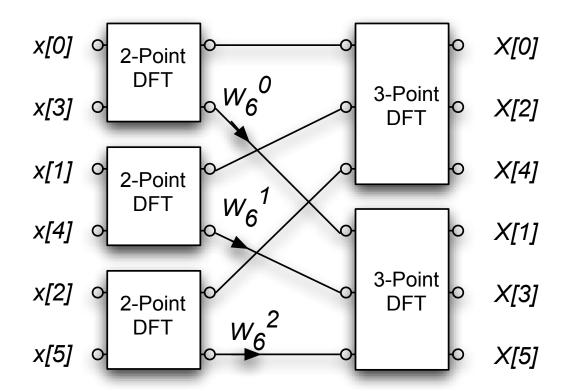
This is just the decimation-in-time algorithm reversed!

The inputs are in normal order, and the outputs are bit reversed.

Non-Power-of-2 FFT's

A similar argument applies for any length DFT, where the length N is a composite number.

For example, if N=6, a decimation-in-time FFT could compute three 2-point DFT's followed by two 3-point DFT's



Non-Power-of-2 FFT's

Good component DFT's are available for lengths up to 20 or so. Many of these exploit the structure for that specific length. For example, a factor of

$$W_N^{N/4} = e^{-j\frac{2\pi}{N}(N/4)} = e^{-j\frac{\pi}{2}} = -j$$
 Why?

just swaps the real and imaginary components of a complex number, and doesn't actually require any multiplies.

Hence a DFT of length 4 doesn't require any complex multiplies. Half of the multiplies of an 8-point DFT also don't require multiplication.

Composite length FFT's can be very efficient for any length that factors into terms of this order.

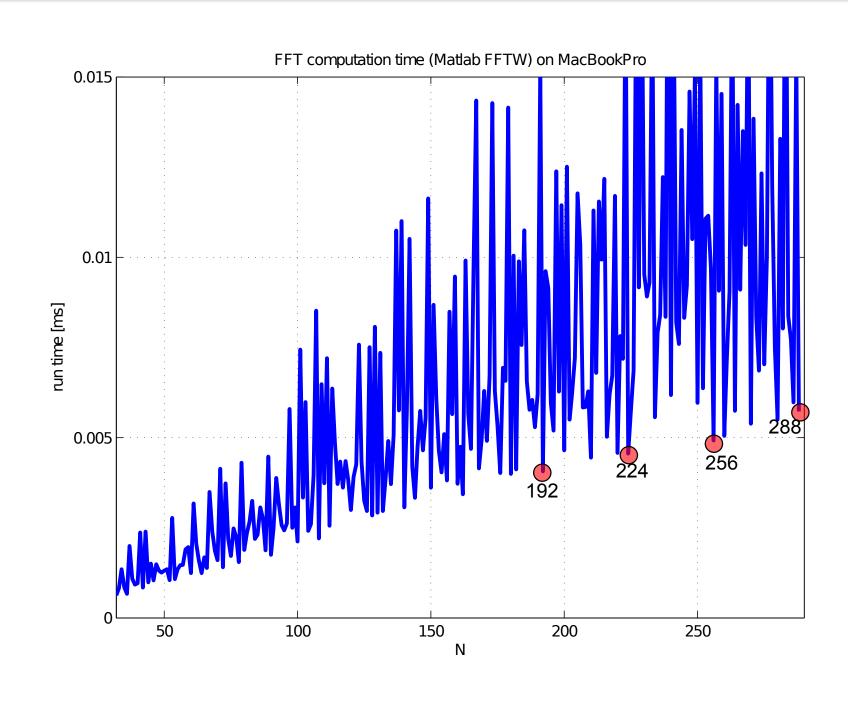
For example N = 693 factors into

$$N = (7)(9)(11)$$

each of which can be implemented efficiently. We would perform

- \bullet 9 \times 11 DFT's of length 7
- \bullet 7 \times 11 DFT's of length 9, and
- 7×9 DFT's of length 11

- Historically, the power-of-two FFTs were much faster (better written and implemented).
- For non-power-of-two length, it was faster to zero pad to power of two.
- Recently this has changed. The free FFTW package implements very efficient algorithms for almost any filter length. Matlab has used FFTW since version 6



FFT as Matrix Operation

$$\begin{pmatrix} X[0] \\ \vdots \\ X[k] \\ \vdots \\ X[N-1] \end{pmatrix} = \begin{pmatrix} W_N^{00} & \cdots & W_N^{0n} & \cdots & W_N^{0(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_N^{k0} & \cdots & W_N^{kn} & \cdots & W_N^{k(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_N^{(N-1)0} & \cdots & W_N^{(N-1)n} & \cdots & W_N^{(N-1)(N-1)} \end{pmatrix} \begin{pmatrix} x[0] \\ \vdots \\ x[n] \\ \vdots \\ x[N-1] \end{pmatrix}$$

• W_N is fully populated $\Rightarrow N^2$ entries.

FFT as Matrix Operation

$$\begin{pmatrix} X[0] \\ \vdots \\ X[k] \\ \vdots \\ X[N-1] \end{pmatrix} = \begin{pmatrix} W_N^{00} & \cdots & W_N^{0n} & \cdots & W_N^{0(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_N^{k0} & \cdots & W_N^{kn} & \cdots & W_N^{k(N-1)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ W_N^{(N-1)0} & \cdots & W_N^{(N-1)n} & \cdots & W_N^{(N-1)(N-1)} \end{pmatrix} \begin{pmatrix} x[0] \\ \vdots \\ x[n] \\ \vdots \\ x[N-1] \end{pmatrix}$$

- W_N is fully populated $\Rightarrow N^2$ entries.
- FFT is a decomposition of W_N into a more sparse form:

$$F_N = \left[egin{array}{ccc} I_{N/2} & D_{N/2} \ I_{N/2} & -D_{N/2} \end{array}
ight] \left[egin{array}{ccc} W_{N/2} & 0 \ 0 & W_{N/2} \end{array}
ight] \left[egin{array}{ccc} {\sf Even-Odd\ Perm.} \ {\sf Matrix} \end{array}
ight]$$

 \bullet $I_{N/2}$ is an identity matrix. $D_{N/2}$ is a diagonal with entries 1, W_N , ..., $W_N^{N/2-1}$

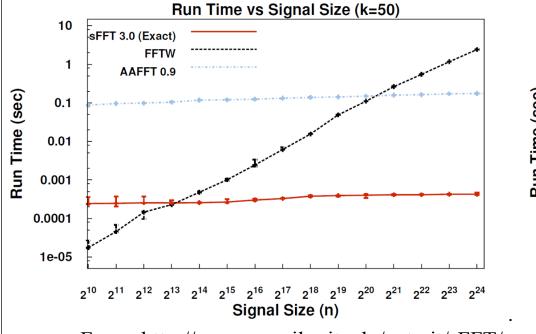
FFT as Matrix Operation

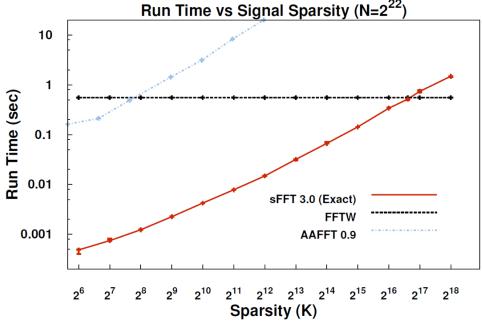
Example: N = 4

$$F_4 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & W_4 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -W_4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Beyond NlogN

- What if the signal x[n] has a k sparse frequency
 - A. Gilbert et. al, "Near-optimal sparse Fourier representations via sampling
 - H. Hassanieh et. al, "Nearly Optimal Sparse Fourier Transform"
 - Others.....
- O(K Log N) instead of O(N Log N)





From: http://groups.csail.mit.edu/netmit/sFFT/paper.html

M. Lustig, EECS UC Berkeley