
M. Lustig,  EECS UC Berkeley

EE123
Digital Signal Processing

Lecture 8
FFT II
Lab1

based on slides by J.M. Kahn



M. Lustig,  EECS UC Berkeley

Announcements

• Last time: 
–Started FFT

• Today 
– Lab 1
– Finish FFT

• Read Ch. 10.1-10.2

• Midterm 1:  Feb 22nd
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Lab1

• Generate a chirp
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Lab1

• Play and record chirp
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Lab 1
• Auto-correlation of a chirp - pulse compression
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Lab I part II - Sonar

• Generate a pulse - analytic
• Use real part for pulse train
• Transmit and record

Sent and recorded:
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Lab I part II - Sonar

• Extract a pulse

sent:

received:
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Lab I part II - Sonar

• Matched Filtering

Envelope Matched Filtered

received:

Filter:
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Lab I part II - Sonar

• Display echos vs distance
Matched Filter:

samples d=samp /fs *v_st=samp /fs
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Lab I part II - Sonar
• Real time demo
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Decimation-in-Time Fast Fourier Transform

Combining all these stages, the diagram for the 8 sample DFT is:
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This the decimation-in-time FFT algorithm.
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Decimation-in-Time Fast Fourier Transform

In general, there are log
2

N stages of decimation-in-time.

Each stage requires N/2 complex multiplications, some of
which are trivial.

The total number of complex multiplications is (N/2) log
2

N.

The order of the input to the decimation-in-time FFT
algorithm must be permuted.

First stage: split into odd and even. Zero low-order bit first
Next stage repeats with next zero-lower bit first.
Net e↵ect is reversing the bit order of indexes

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014



SP 2015

Decimation-in-Time Fast Fourier Transform

This is illustrated in the following table for N = 8.

Decimal Binary Bit-Reversed Binary Bit-Reversed Decimal

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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Decimation-in-Frequency Fast Fourier Transform

The DFT is

X [k] =
N�1X

n=0

x [n]W nk

N

If we only look at the even samples of X [k], we can write k = 2r ,

X [2r ] =
N�1X

n=0

x [n]W n(2r)

N

We split this into two sums, one over the first N/2 samples, and
the second of the last N/2 samples.

X [2r ] =

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2r(n+N/2)
N
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Decimation-in-Frequency Fast Fourier Transform

But W 2r(n+N/2)
N

= W 2rn

N

WN

N

= W 2rn

N

= W rn

N/2.
We can then write

X [2r ] =

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2r(n+N/2)
N

=

(N/2)�1X

n=0

x [n]W 2rn

N

+

(N/2)�1X

n=0

x [n + N/2]W 2rn

N

=

(N/2)�1X

n=0

(x [n] + x [n + N/2])W rn

N/2

This is the N/2-length DFT of first and second half of x [n]
summed.
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Decimation-in-Frequency Fast Fourier Transform

X [2r ] = DFT
N

2

{(x [n] + x [n + N/2])}

X [2r + 1] = DFT
N

2

{(x [n]� x [n + N/2])W n

N

}

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the N/2 DFTs, and the
N/4 DFT’s until we reach simple butterflies.
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Decimation-in-Frequency Fast Fourier Transform

The diagram for and 8-point decimation-in-frequency DFT is as
follows
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This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.
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Non-Power-of-2 FFT’s

A similar argument applies for any length DFT, where the length
N is a composite number.
For example, if N = 6, a decimation-in-time FFT could compute
three 2-point DFT’s followed by two 3-point DFT’s
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Non-Power-of-2 FFT’s

Good component DFT’s are available for lengths up to 20 or so.
Many of these exploit the structure for that specific length. For
example, a factor of

WN/4
N

= e�j

2⇡
N

(N/4) = e�j

⇡
2 = �j Why?

just swaps the real and imaginary components of a complex
number, and doesn’t actually require any multiplies.
Hence a DFT of length 4 doesn’t require any complex multiplies.
Half of the multiplies of an 8-point DFT also don’t require
multiplication.
Composite length FFT’s can be very e�cient for any length that
factors into terms of this order.

Miki Lustig UCB. Based on Course Notes by J.M Kahn Fall 2011, EE123 Digital Signal ProcessingSP 2014



SP 2015

For example N = 693 factors into

N = (7)(9)(11)

each of which can be implemented e�ciently. We would perform

9⇥ 11 DFT’s of length 7
7⇥ 11 DFT’s of length 9, and
7⇥ 9 DFT’s of length 11
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Historically, the power-of-two FFTs were much faster (better
written and implemented).
For non-power-of-two length, it was faster to zero pad to
power of two.
Recently this has changed. The free FFTW package
implements very e�cient algorithms for almost any filter
length. Matlab has used FFTW since version 6
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FFT as Matrix Operation
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FFT as Matrix Operation
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FFT as Matrix Operation

Example: N = 4

F
4
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Beyond  NlogN

• What if the signal x[n] has a k sparse frequency
– A. Gilbert et. al, “Near-optimal sparse Fourier representations via 

sampling
– H. Hassanieh et. al, “Nearly Optimal Sparse Fourier Transform”
– Others......

• O(K Log N) instead of O(N Log N)

From: http://groups.csail.mit.edu/netmit/sFFT/paper.html


