EE123 Digital Signal Processing

Lecture 8
FFT II
Lab1

Announcements

- Last time:
-Started FFT
- Today
- Lab 1
- Finish FFT
- Read Ch. 10.1-10.2
- Midterm 1: Feb 22nd

Lab1

- Generate a chirp

Lab1

- Play and record chirp

M. Lustig, EECS UC Berkeley

Lab 1

- Auto-correlation of a chirp - pulse compression

Lab I part II - Sonar

- Generate a pulse - analytic
- Use real part for pulse train
- Transmit and record

Sent and recorded:

Lab I part II - Sonar

- Extract a pulse

Lab I part II - Sonar

- Matched Filtering

Filter:

Lab I part II - Sonar

- Display echos vs distance

Matched Filter:

Lab I part II - Sonar

- Real time demo

Decimation-in-Time Fast Fourier Transform

Combining all these stages, the diagram for the 8 sample DFT is:

This the decimation-in-time FFT algorithm.

Decimation-in-Time Fast Fourier Transform

- In general, there are $\log _{2} N$ stages of decimation-in-time.
- Each stage requires $N / 2$ complex multiplications, some of which are trivial.
- The total number of complex multiplications is $(N / 2) \log _{2} N$.
- The order of the input to the decimation-in-time FFT algorithm must be permuted.
- First stage: split into odd and even. Zero low-order bit first
- Next stage repeats with next zero-lower bit first.
- Net effect is reversing the bit order of indexes

Decimation-in-Time Fast Fourier Transform

This is illustrated in the following table for $N=8$.

Decimal	Binary	Bit-Reversed Binary	Bit-Reversed Decimal
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Decimation-in-Frequency Fast Fourier Transform

The DFT is

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{n k}
$$

If we only look at the even samples of $X[k]$, we can write $k=2 r$,

$$
X[2 r]=\sum_{n=0}^{N-1} x[n] W_{N}^{n(2 r)}
$$

We split this into two sums, one over the first $N / 2$ samples, and the second of the last $N / 2$ samples.

$$
X[2 r]=\sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{2 r n}+\sum_{n=0}^{(N / 2)-1} x[n+N / 2] W_{N}^{2 r(n+N / 2)}
$$

Decimation-in-Frequency Fast Fourier Transform

But $W_{N}^{2 r(n+N / 2)}=W_{N}^{2 r n} W_{N}^{N}=W_{N}^{2 r n}=W_{N / 2}^{r n}$.
We can then write

$$
\begin{aligned}
X[2 r] & =\sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{2 r n}+\sum_{n=0}^{(N / 2)-1} x[n+N / 2] W_{N}^{2 r(n+N / 2)} \\
& =\sum_{n=0}^{(N / 2)-1} x[n] W_{N}^{2 r n}+\sum_{n=0}^{(N / 2)-1} x[n+N / 2] W_{N}^{2 r n} \\
& =\sum_{n=0}^{(N / 2)-1}(x[n]+x[n+N / 2]) W_{N / 2}^{r n}
\end{aligned}
$$

This is the $N / 2$-length DFT of first and second half of $x[n]$ summed.

Decimation-in-Frequency Fast Fourier Transform

$$
\begin{aligned}
X[2 r] & =\operatorname{DFT}_{\frac{N}{2}}\{(x[n]+x[n+N / 2])\} \\
X[2 r+1] & =\operatorname{DFT}_{\frac{N}{2}}\left\{(x[n]-x[n+N / 2]) W_{N}^{n}\right\}
\end{aligned}
$$

(By a similar argument that gives the odd samples)

Continue the same approach is applied for the $N / 2 \mathrm{DFTs}$, and the $N / 4$ DFT's until we reach simple butterflies.

Decimation-in-Frequency Fast Fourier Transform

The diagram for and 8-point decimation-in-frequency DFT is as follows

This is just the decimation-in-time algorithm reversed!
The inputs are in normal order, and the outputs are bit reversed.

Non-Power-of-2 FFT's

A similar argument applies for any length DFT, where the length N is a composite number.
For example, if $N=6$, a decimation-in-time FFT could compute three 2-point DFT's followed by two 3-point DFT's

Non-Power-of-2 FFT's

Good component DFT's are available for lengths up to 20 or so. Many of these exploit the structure for that specific length. For example, a factor of

$$
W_{N}^{N / 4}=e^{-j \frac{2 \pi}{N}(N / 4)}=e^{-j \frac{\pi}{2}}=-j \quad \text { Why? }
$$

just swaps the real and imaginary components of a complex number, and doesn't actually require any multiplies.
Hence a DFT of length 4 doesn't require any complex multiplies.
Half of the multiplies of an 8-point DFT also don't require multiplication.
Composite length FFT's can be very efficient for any length that factors into terms of this order.

For example $N=693$ factors into

$$
N=(7)(9)(11)
$$

each of which can be implemented efficiently. We would perform

- 9×11 DFT's of length 7
- 7×11 DFT's of length 9 , and
- 7×9 DFT's of length 11
- Historically, the power-of-two FFTs were much faster (better written and implemented).
- For non-power-of-two length, it was faster to zero pad to power of two.
- Recently this has changed. The free FFTW package implements very efficient algorithms for almost any filter length. Matlab has used FFTW since version 6

FFT as Matrix Operation

$$
\left(\begin{array}{c}
X[0] \\
\vdots \\
X[k] \\
\vdots \\
X[N-1]
\end{array}\right)=\left(\begin{array}{ccccc}
w_{N}^{00} & \cdots & w_{N}^{0 n} & \cdots & w_{N}^{0(N-1)} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
W_{N}^{k 0} & \cdots & w_{N}^{k n} & \cdots & w_{N}^{k(N-1)} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
w_{N}^{(N-1) 0} & \cdots & w_{N}^{(N-1) n} & \cdots & w_{N}^{(N-1)(N-1)}
\end{array}\right)\left(\begin{array}{c}
x[0] \\
\vdots \\
x[n] \\
\vdots \\
x[N-1]
\end{array}\right)
$$

- W_{N} is fully populated $\Rightarrow N^{2}$ entries.

FFT as Matrix Operation

$$
\left(\begin{array}{c}
X[0] \\
\vdots \\
X[k] \\
\vdots \\
X[N-1]
\end{array}\right)=\left(\begin{array}{ccccc}
w_{N}^{00} & \cdots & w_{N}^{0 n} & \cdots & w_{N}^{0(N-1)} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
W_{N}^{k 0} & \cdots & w_{N}^{k n} & \cdots & W_{N}^{k(N-1)} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
W_{N}^{(N-1) 0} & \cdots & w_{N}^{(N-1) n} & \cdots & w_{N}^{(N-1)(N-1)}
\end{array}\right)\left(\begin{array}{c}
x[0] \\
\vdots \\
x[n] \\
\vdots \\
x[N-1]
\end{array}\right)
$$

- W_{N} is fully populated $\Rightarrow N^{2}$ entries.
- FFT is a decomposition of W_{N} into a more sparse form:

$$
F_{N}=\left[\begin{array}{cc}
I_{N / 2} & D_{N / 2} \\
I_{N / 2} & -D_{N / 2}
\end{array}\right]\left[\begin{array}{cc}
W_{N / 2} & 0 \\
0 & W_{N / 2}
\end{array}\right]\left[\begin{array}{c}
\text { Even-Odd Perm. } \\
\text { Matrix }
\end{array}\right]
$$

- $I_{N / 2}$ is an identity matrix. $D_{N / 2}$ is a diagonal with entries $1, W_{N}, \cdots, W_{N}^{N / 2-1}$

FFT as Matrix Operation

Example: $N=4$

$$
F_{4}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & W_{4} \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -W_{4}
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Beyond NlogN

- What if the signal $x[n]$ has a k sparse frequency
- A. Gilbert et. al, "Near-optimal sparse Fourier representations via sampling
- H. Hassanieh et. al, "Nearly Optimal Sparse Fourier Transform"
- Others......
- O(K Log N) instead of O(N Log N)

