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Demo

• iSpectrum Demo
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Announcements

• Last time: 
– FFT

• Today:
– Frequency analysis with DFT
– Windowing
– Effect of zero-padding
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Spectral analysis using the DFT

• DFT is a tool for spectrum analysis
• Should be simple:

– Take a block, compute spectrum with DFT

• But, there are issues and tradeoffs:
– Signal duration vs spectral resolution
– Sampling rate vs spectral range
– Spectral sampling rate
– Spectral artifacts



•  Steps for processing C.T. signals:

Spectral Analysis with the DFT

Consider these steps of processing continuous-time signals:
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Spectral analysis using the DFT



• Two important tools:
– Applying a window - reduced artifacts
– Zero-padding - increases spectral sampling

Spectral Analysis with the DFT

Two important tools:

Applying a window to the input signal – reduces spectral
artifacts
Padding input signal with zeros – increases the spectral
sampling

Key Parameters:

Parameter Symbol Units

Sampling interval T s
Sampling frequency ⌦

s

= 2⇡
T

rad/s
Window length L unitless
Window duration L · T s
DFT length N � L unitless
DFT duration N · T s

Spectral resolution ⌦

s

L

= 2⇡
L·T rad/s

Spectral sampling interval ⌦

s

N

= 2⇡
N·T rad/s
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Spectral analysis using the DFT



Filtered Continuous-Time Signal

We consider an example:

x

c

(t) = A

1

cos!
1

t + A

2

cos!
2

t

X

c

(j⌦) = A

1

⇡[�(⌦� !
1

) + �(⌦+ !
1

)] + A

2

⇡[�(⌦� !
2

) + �(⌦+ !
2

)]

0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

t (s)

x c
(t

)

CT Signal x
c
(t), -  < t < ,

1
/2  = 3.5 Hz, 

2
/2  = 6.5 Hz

-20 -10 0 10 20
0

0.5

1

1.5

2

2.5

3

3.5

/2  (Hz)

X
c
(j

)

FT of Original CT Signal (heights represent areas of ( ) impulses)

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing

Ω

Ω

M. Lustig,  EECS UC Berkeley

Filtered C.T Signal Example

xc(t) = A1 cos!1t+A2 cos!2t

Xc(j⌦) = A1⇡[�(⌦� !1) + �(⌦+ !1)] +A2⇡[�(⌦� !2) + �(⌦+ !2)]



Sampled Filtered Continuous-Time Signal

Sampled Signal
If we sampled the signal over an infinite time duration, we would
have:

x [n] = x

c

(t)|
t=nT

, �1 < n < 1

described by the discrete-time Fourier transform:

X (e j⌦T ) =
1

T

1X

r=�1
X

c

✓
j

✓
⌦� r

2⇡

T

◆◆
, �1 < ⌦ < 1

Recall X (e j!) = X (e j⌦T ), where ! = ⌦T ... more in ch 4.
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Sampled Filtered Continuous-Time Signal

In the examples shown here, the sampling rate is
⌦
s

/2⇡ = 1/T = 20 Hz, su�ciently high that aliasing does not
occur.
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Windowed Sampled Signal

Block of L Signal Samples
In any real system, we sample only over a finite block of L samples:

x [n] = x

c

(t)|
t=nT

, 0  n  L� 1

This simply corresponds to a rectangular window of duration L.

Recall: in Homework 1 we explored the e↵ect of rectangular
and triangular windowing
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Windowed Sampled Signal

Windowed Block of L Signal Samples
We take the block of signal samples and multiply by a window of
duration L, obtaining:

v [n] = x [n] · w [n], 0  n  L� 1

Suppose the window w [n] has DTFT W (e j!).

Then the windowed block of signal samples has a DTFT given by
the periodic convolution between X (e j!) and W (e j!):

V (e j!) =
1

2⇡

Z ⇡

�⇡
X (e j✓)W (e j(!�✓))d✓
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Windowed Sampled Signal

Convolution with W (e j!) has two e↵ects in the spectrum:

1 It limits the spectral resolution. – Main lobes of the DTFT of
the window

2 The window can produce spectral leakage. – Side lobes of the
DTFT of the window

* These two are always a tradeo↵ - time-frequency uncertainty
principle
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Windows (as defined in MATLAB)
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Windows (as defined in MATLAB)
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Windows

All of the window functions w [n] are real and even.

All of the discrete-time Fourier transforms

W (e j!) =

M

2X

n=�M

2

w [n]e�jn!

are real, even, and periodic in ! with period 2⇡.

In the following plots, we have normalized the windows to unit
d.c. gain:

W (e j0) =

M

2X

n=�M

2

w [n] = 1

This makes it easier to compare windows.
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Window Example
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Windows Properties

These are characteristic of the window type

Window Main-lobe Sidelobe �
s

Sidelobe �20 log
10

�
s

Rect
4⇡

M + 1
0.09 21

Bartlett
8⇡

M + 1
0.05 26

Hann
8⇡

M + 1
0.0063 44

Hamming
8⇡

M + 1
0.0022 53

Blackman
12⇡

M + 1
0.0002 74

Most of these (Bartlett, Hann, Hamming) have a transition width
that is twice that of the rect window.

Warning: Always check what’s the definition of M

Adapted from A Course In Digital Signal Processing by Boaz Porat, Wiley, 1997
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Windows Examples

Here we consider several examples. As before, the sampling rate is
⌦
s

/2⇡ = 1/T = 20 Hz.
Rectangular Window, L = 32

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

n

w
[n

]

Rectangular Window, L = 32

-20 -10 0 10 20
0

5

10

15

20

25

30

35

40

/2  (Hz)

|W
(e
j
T
)|

DTFT of Rectangular Window

0 5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

1.5

n

v[
n
]

Sampled, Windowed Signal, Rectangular Window, L = 32

-20 -10 0 10 20
0

5

10

15

20

/2  (Hz)

|V
(e
j
T
)|

DTFT of Sampled, Windowed Signal

Miki Lustig UCB. Based on Course Notes by J.M Kahn Spring 2014, EE123 Digital Signal Processing

Ω

ω
T

ω
T



Windows Examples

Triangular Window, L = 32
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Windows Examples

Hamming Window, L = 32
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Windows Examples

Hamming Window, L = 64
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Optimal Window: Kaiser

• Minimum main-lobe width for a given side-
lobe energy % 

• Window is parametrized with L and β
– β determines side-lobe level
– L determines main-lobe width

R
sidelobes

|H(ej!)|2d!
R ⇡
�⇡ |H(ej!)|2d!

OS Eq 10.12
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Example - Noiseless
y = sin(2⇡0.1992n) + 0.005 sin(2⇡0.25n) | 0  n < 128
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Example



Zero-Padding

In preparation for taking an N-point DFT, we may zero-pad
the windowed block of signal samples to a block length N � L:

(
v [n] 0  n  L� 1

0 L  n  N � 1

This zero-padding has no e↵ect on the DTFT of v [n], since
the DTFT is computed by summing over �1 < n < 1.

E↵ect of Zero Padding

We take the N-point DFT of the zero-padded v [n], to obtain
the block of N spectral samples:

V [k], 0  k  N � 1
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Zero-Padding

Consider the DTFT of the zero-padded v [n]. Since the
zero-padded v [n] is of length N, its DTFT can be written:

V (e j!) =
N�1X

n=0

v [n]e�jn!, �1 < ! < 1

The N-point DFT of v [n] is given by:

V [k] =
N�1X

n=0

v [n]W kn

N

=
N�1X

n=0

v [n]e�j(2⇡/N)nk , 0  k  N � 1

We see that V [k] corresponds to the samples of V (e j!):

V [k] = V (e j!)
��
!=k

2⇡
N

, 0  k  N � 1

To obtain samples at more closely spaced frequencies, we
zero-pad v [n] to longer block length N. The spectrum is the
same, we just have more samples.
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Frequency Analysis with DFT

Note that the ordering of the DFT samples is unusual.

V [k] =
N�1X

n=0

v [n]W nk

N

The DC sample of the DFT is k = 0

V [0] =
N�1X

n=0

v [n]W 0n

N

=
N�1X

n=0

v [n]

The positive frequencies are the first N/2 samples
The first N/2 negative frequencies are circularly shifted

((�k))
N

= N � k

so they are the last N/2 samples. (Use fftshift to reorder)
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Frequency Analysis with DFT Examples:

Hamming Window, L = 32, N = 32
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Frequency Analysis with DFT Examples:

Hamming Window, L = 32, Zero-Padded to N = 64
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Sampled, Windowed Signal, Hamming Window, L = 32, Zero-Padded to N = 64
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http://www.neuroradiologycases.com

A 40 yo pt with a history of lower limb weakness referred for mri 
screening of brain and whole spine for cord. MRI sagittal T2 screening 
of dorsal region shows a faint uniform linear high signal at the center of 
the cord. The signal abnormality likely to represent:

(1) Cord demyelination.
(2) Syrinx (spinal cord disease).
(3) Artifact.

Answer : Its an artifact, known as truncation or Gibbs artifact



Frequency Analysis with DFT

Length of window determines spectral resolution

Type of window determines side-lobe amplitude.
(Some windows have better tradeo↵ between
resolution-sidelobe)

Zero-padding approximates the DTFT better. Does not
introduce new information!
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Potential Problems and Solutions

Potential Problems and Solutions

Problem Possible Solutions

1. Spectral error a. Filter signal to reduce frequency content above ⌦

s

/2 = ⇡/T .

from aliasing Ch.4 b. Increase sampling frequency ⌦

s

= 2⇡/T .

2. Insu�cient frequency a. Increase L

resolution. b. Use window having narrow main lobe.

3. Spectral error a. Use window having low side lobes.

from leakage b. Increase L

4. Missing features a. Increase L,

due to spectral sampling. b. Increase N by zero-padding v [n] to length N > L.
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