

Digital Signal Processing

Lecture 10 Time-Dependent FT

Announcements

- Midterm: 02/22/2016
 - Open everything
 - -... but cheat sheet recommended instead
 - 10am-12pm
- How's the lab going?

Frequency Analysis with DFT

• Length of window determines spectral resolution

 Type of window determines side-lobe amplitude. (Some windows have better tradeoff between resolution-sidelobe)

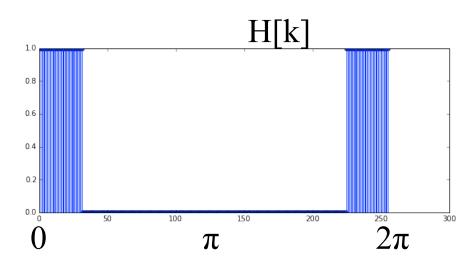
 Zero-padding approximates the DTFT better. Does not introduce new information!

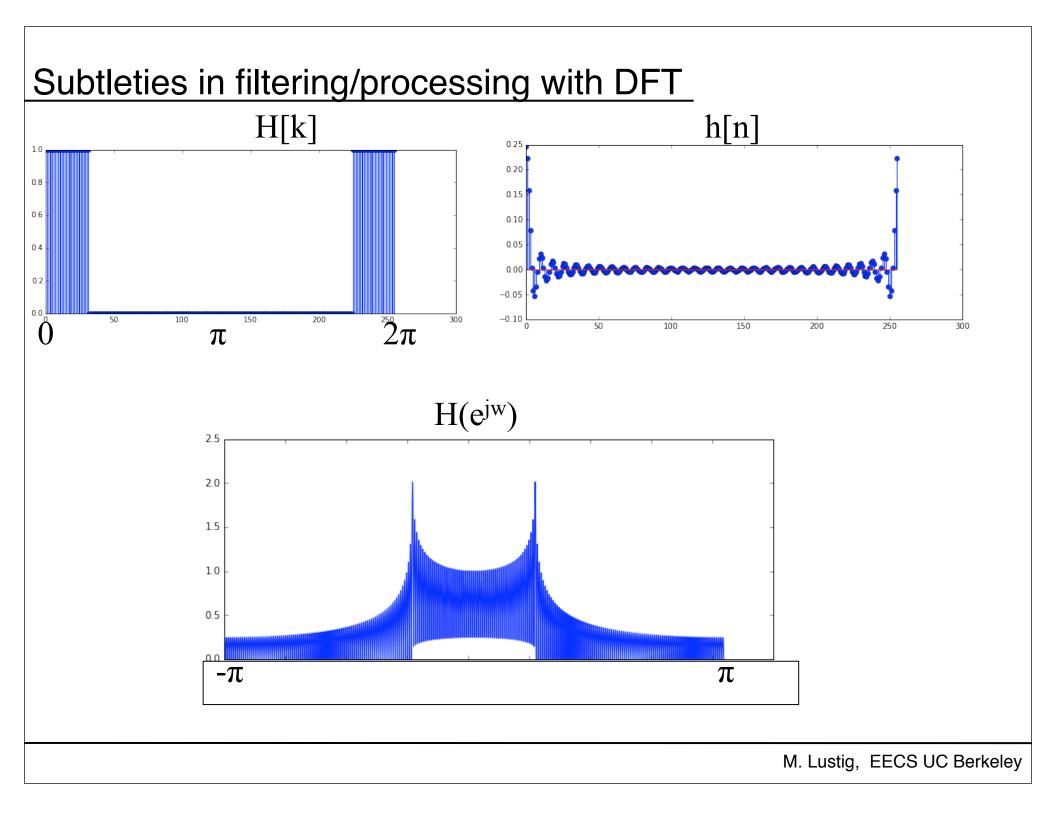
Potential Problems and Solutions

Problem	Possible Solutions
1. Spectral error from aliasing Ch.4	a. Filter signal to reduce frequency content above $\Omega_s/2 = \pi/T$. b. Increase sampling frequency $\Omega_s = 2\pi/T$.
2. Insufficient frequency resolution.	a. Increase <i>L</i> b. Use window having narrow main lobe.
3. Spectral error from leakage	a. Use window having low side lobes. b. Increase <i>L</i>
4. Missing features due to spectral sampling.	a. Increase L, b. Increase N by zero-padding $v[n]$ to length $N > L$.

Subtleties in filtering/processing with DFT

- System is implemented by overlap-and-save
- Filtering using DFT





Last Time

- Frequency Analysis with DFT
- Windowing
- Zero-Padding
- Today:
 - Time-Dependent Fourier Transform
 - Heisenberg Boxes

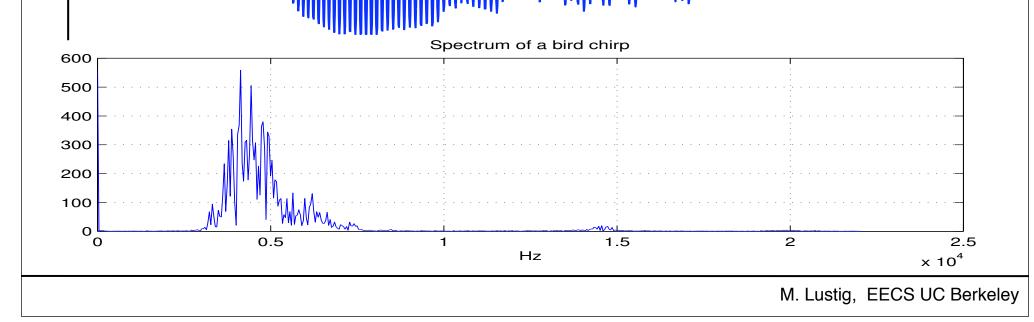
Discrete Transforms (Finite)

- DFT is only one out of a LARGE class of transforms
- Used for:
 - -Analysis
 - -Compression
 - -Denoising
 - -Detection
 - -Recognition
 - -Approximation (Sparse)

Sparse representation has been one of the hottest research topics in the last 15 years in sp

Example of spectral analysis

- Spectrum of a bird chirping
 - Interesting,.... but...
 - Does not tell the whole story
 - No temporal information!



x[n]

Time Dependent Fourier Transform

• To get temporal information, use part of the signal around every time point

$$X[n,\omega) = \sum_{m=-\infty}^{\infty} x[n+m]w[m]e^{-j\omega m}$$

*Also called Short-time Fourier Transform (STFT)

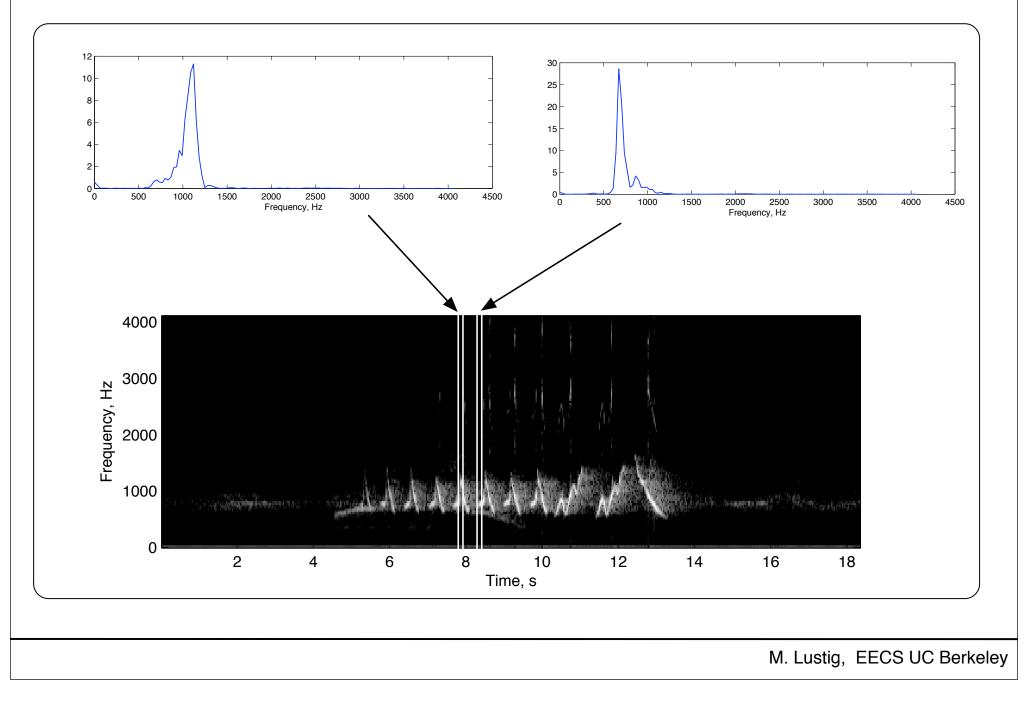
- Mapping from $1D \Rightarrow 2D$, n discrete, w cont.
- Simply slide a window and compute DTFT

Time Dependent Fourier Transform

 To get temporal information, use part of the signal around every time point

$$X[n,\omega) = \sum_{m=-\infty}^{\infty} x[n+m]w[m]e^{-j\omega m}$$
*Also called Short-time Fourier Transform (STFT)

Spectrogram



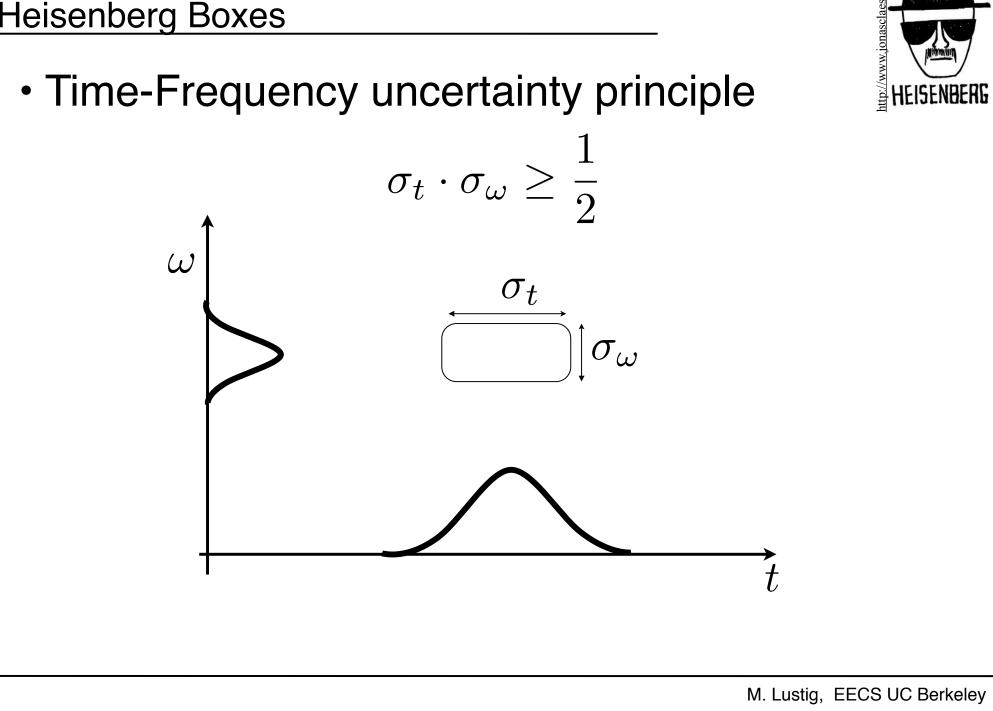
Discrete Time Dependent FT

$$X_r[k] = \sum_{m=0}^{L-1} x[rR+m]w[m]e^{-j2\pi km/N}$$

- L Window length
- R Jump of samples
- N DFT length
- Tradeoff between time and frequency resolution

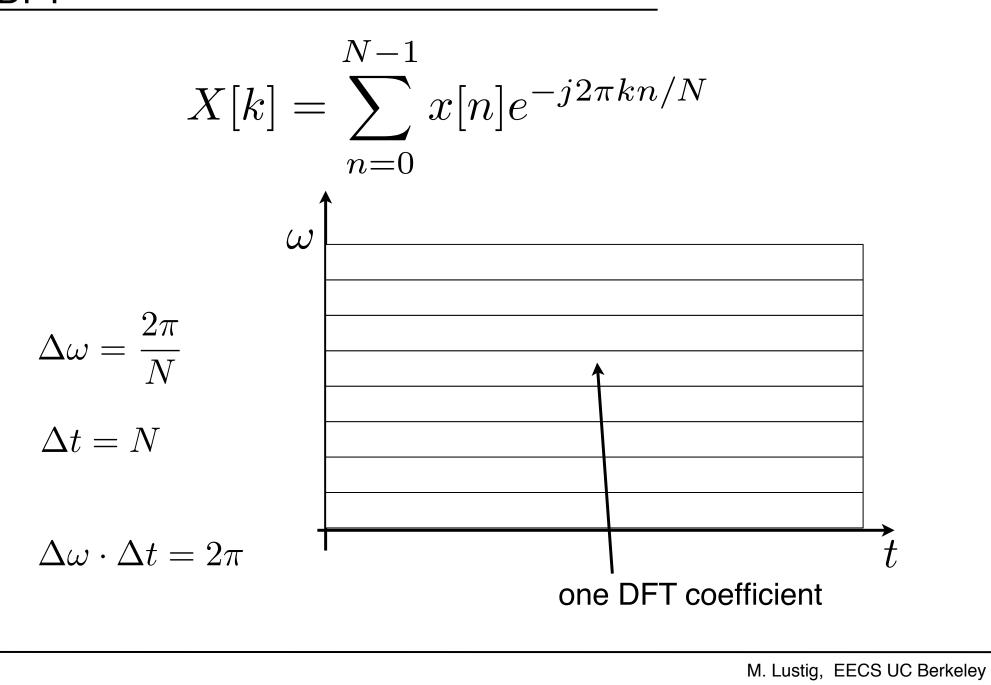
Heisenberg Boxes

Time-Frequency uncertainty principle

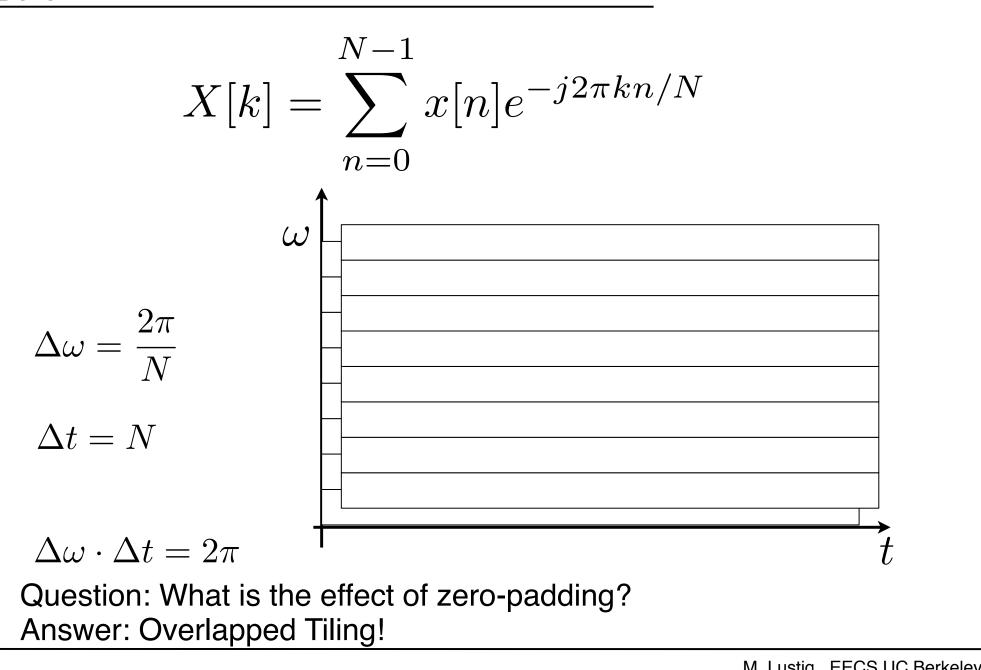


son.coi

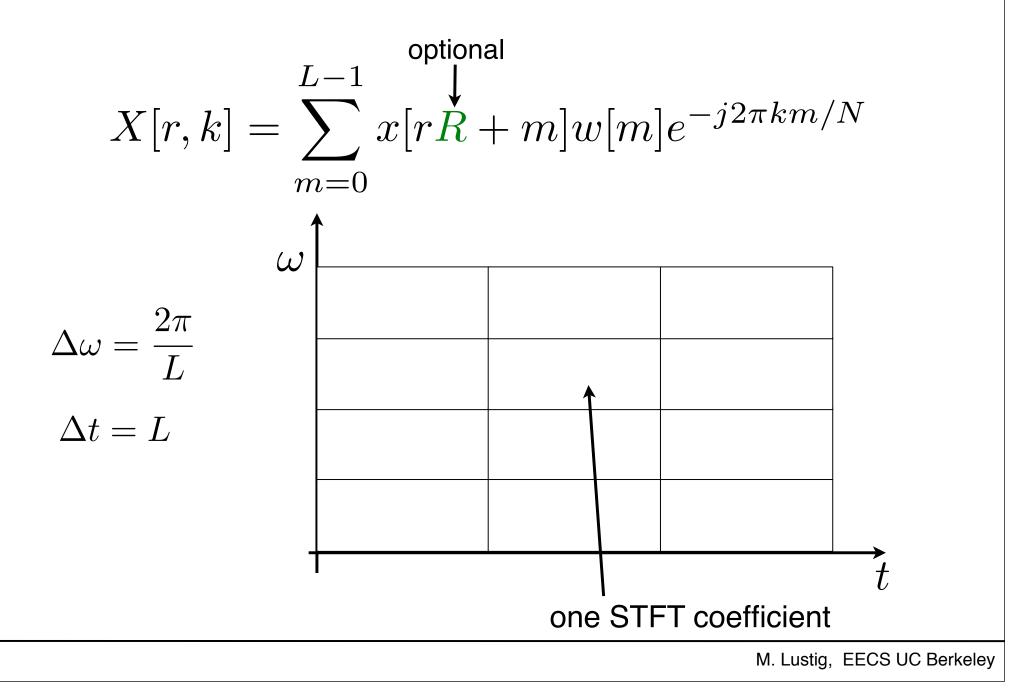
DFT



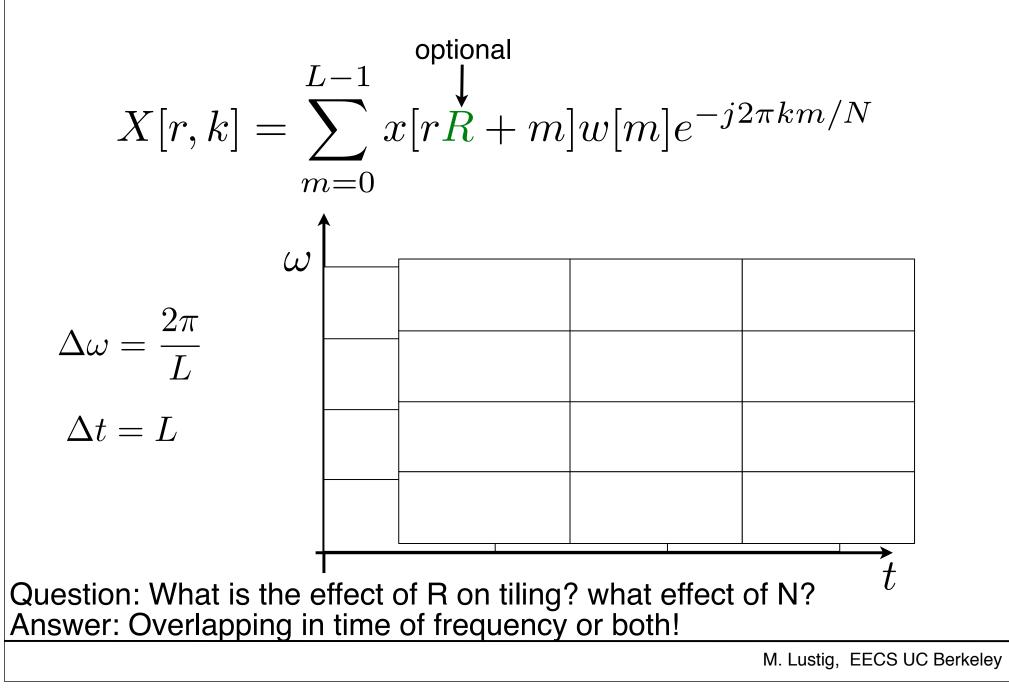
DFT



Discrete STFT

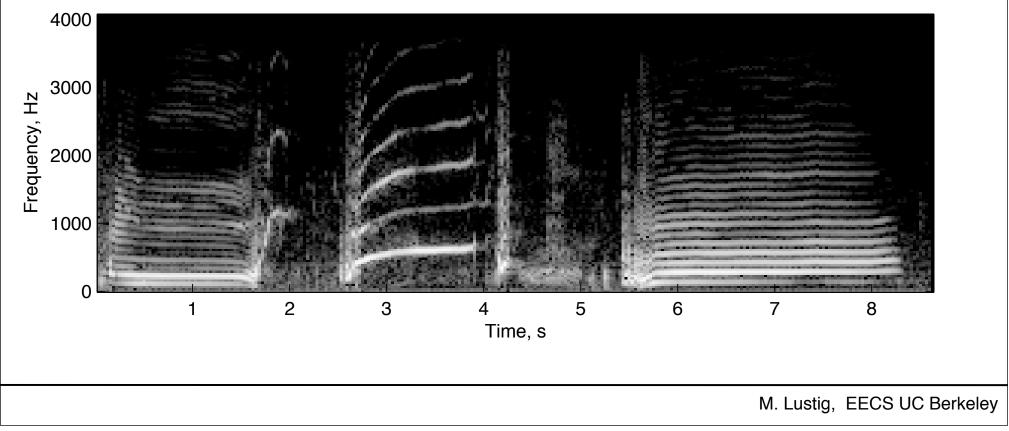


Discrete STFT

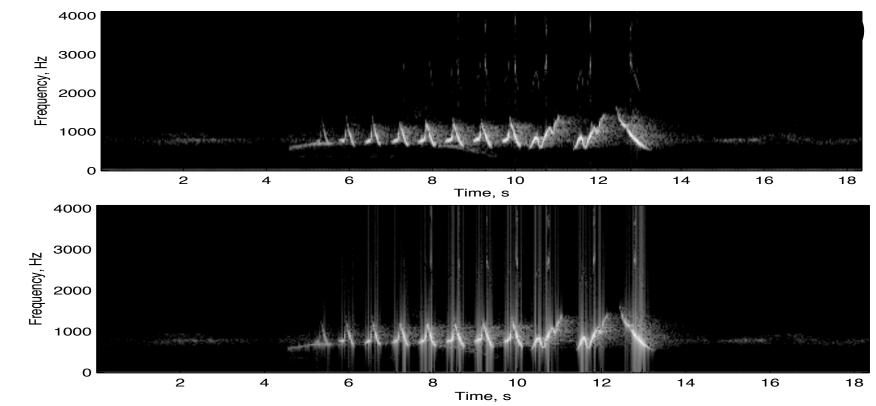


Applications

Spectrogram of Orca whale

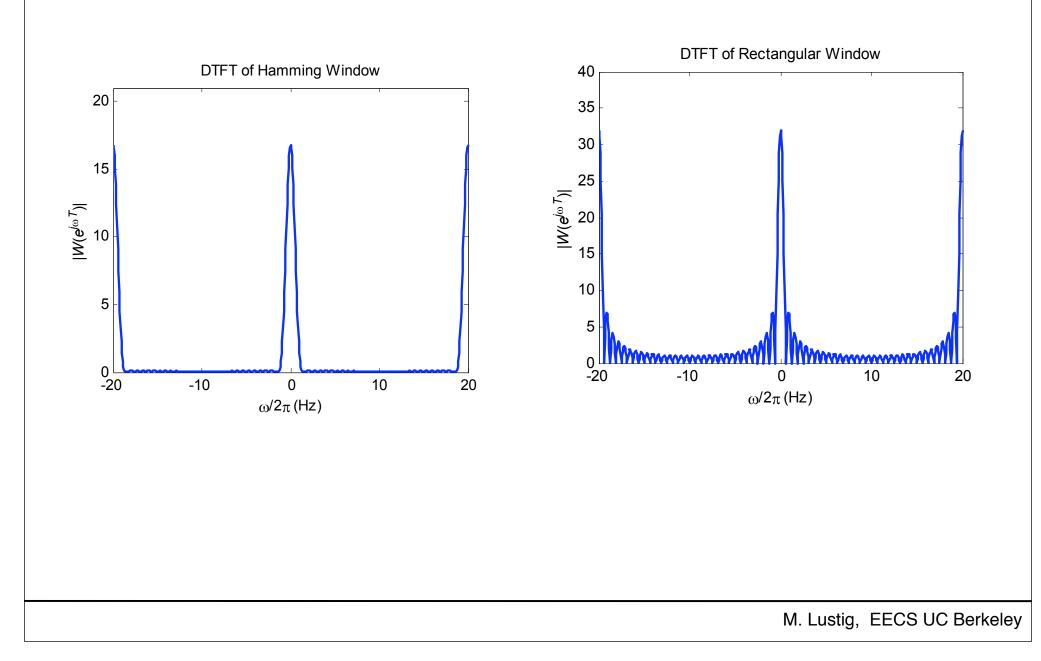


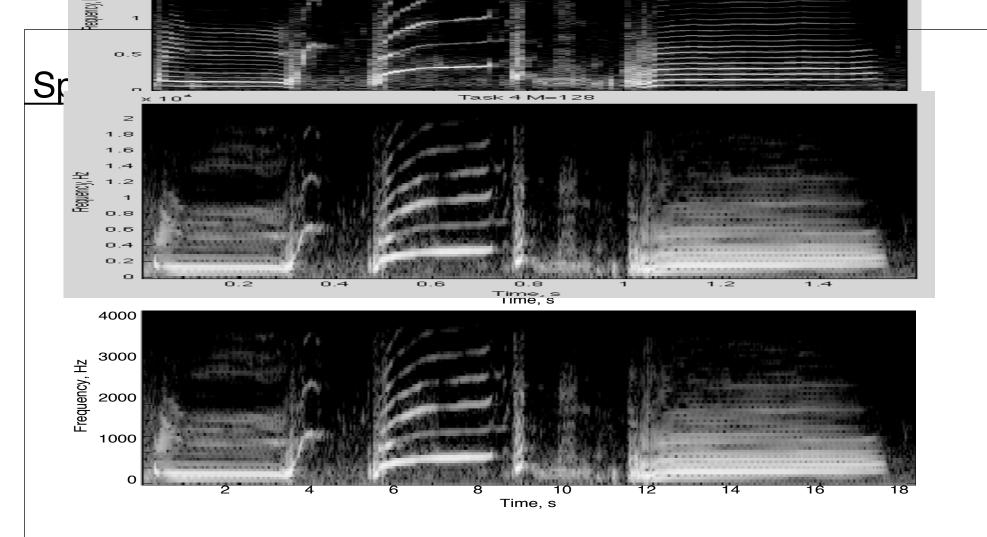
Spectrogram



What is the difference between the spectrograms?
a) Window size B<A
b) Window size B>A
d) (A) uses overlapping window

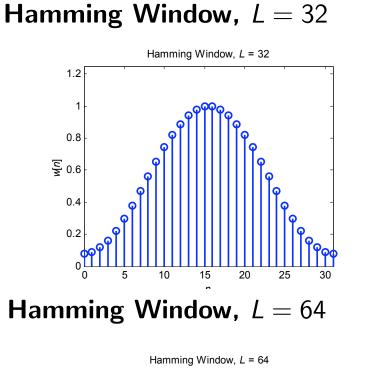
Sidelobes of Hann vs rectangular window





What is the difference between the spectrograms?
a) Window size B<A
b) Window size B>A
d) (A) uses overlapping window

Spectrogram



1.2

1

0.8

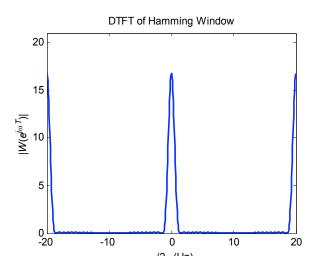
0.4

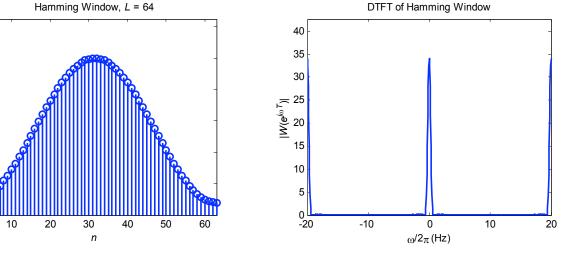
0.2

0

0

[[[]고] 첫 0.6

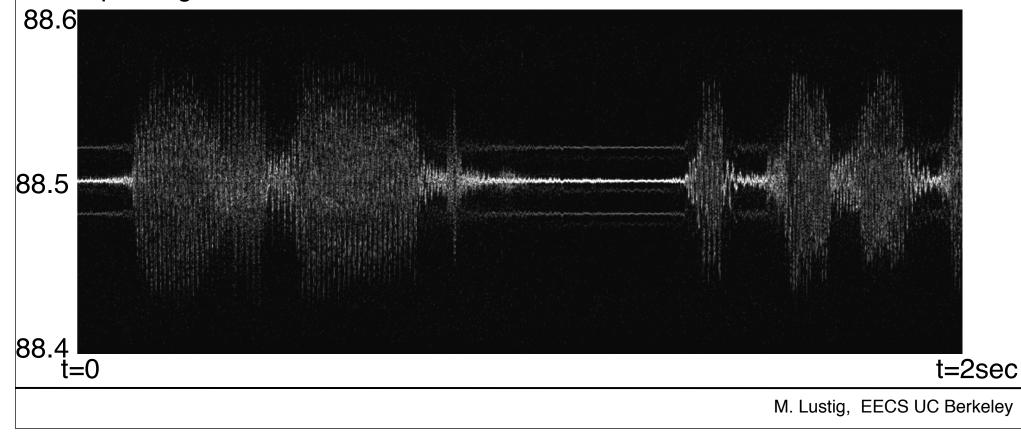


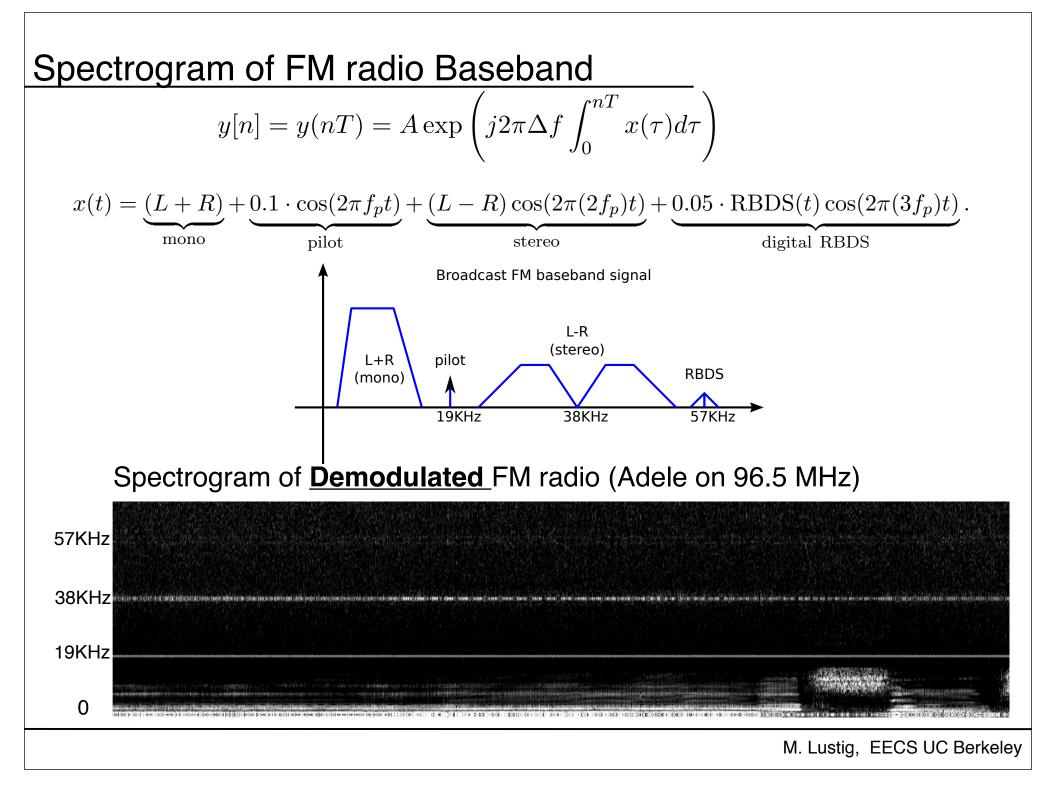


Spectrogram of FM

$$y_c(t) = A \cos\left(2\pi f_c t + 2\pi\Delta f \int_0^t x(\tau)d\tau\right)$$
$$y[n] = y(nT) = A \exp\left(j2\pi\Delta f \int_0^{nT} x(\tau)d\tau\right)$$

Spectrogram of FM radio





Subcarrier FM radio (Hidden Radio Stations)

subcarier +92Khz Punjabi radio L - R (stereo) +38 Pilot (19Khz)	RDS +54Khz	subcarier		ich Hatian	
	在1991年1月1日的高度的1月1日				
gain tune: 10	Mond Audio Left + R	D	Stereo Audio Left - Right	DirectBand RBDS (10%)	Audos subcarrier

Applications

Time Frequency Analysis

Spectrogram of digital communications - Frequency Shift Keying

STFT Reconstruction

$$x[rR+m]w_L[m] = \frac{1}{N} \sum_{k=0}^{N-1} X[n,k] e^{j2\pi km/N}$$

• For non-overlapping windows, R=L :

$$x[n] = \frac{x[n - rL]}{w_L[n - rL]}$$
$$rL \le n \le (r+1)R - 1$$

• What is the problem?

STFT Reconstruction

$$x[rR+m]w_L[m] = \frac{1}{N} \sum_{k=0}^{N-1} X[n,k] e^{j2\pi km/N}$$

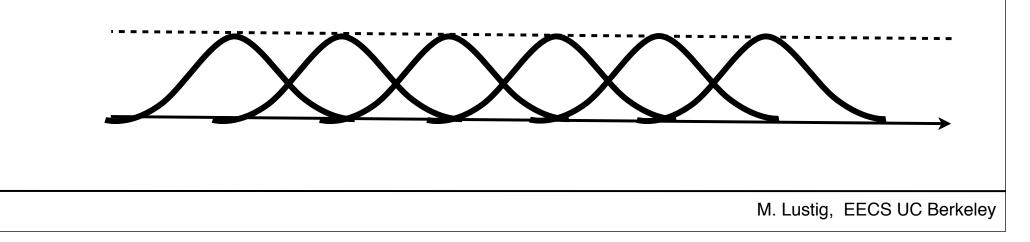
• For non-overlapping windows, R=L :

$$x[n] = \frac{x[n - rL]}{w_L[n - rL]}$$
$$rL \le n \le (r+1)R - 1$$

 For stable reconstruction must overlap window 50% (at least)

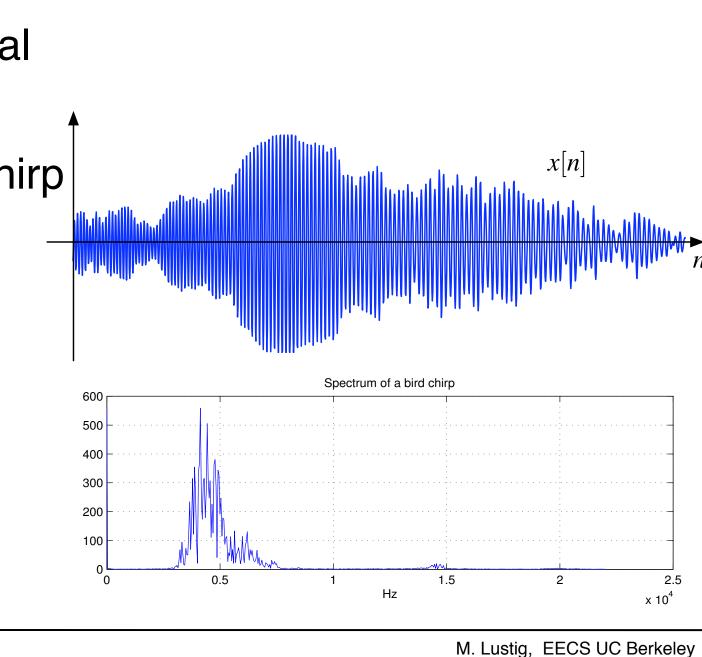
STFT Reconstruction

- For stable reconstruction must overlap window 50% (at least)
- For Hann, Bartlett reconstruct with overlap and add. No division!



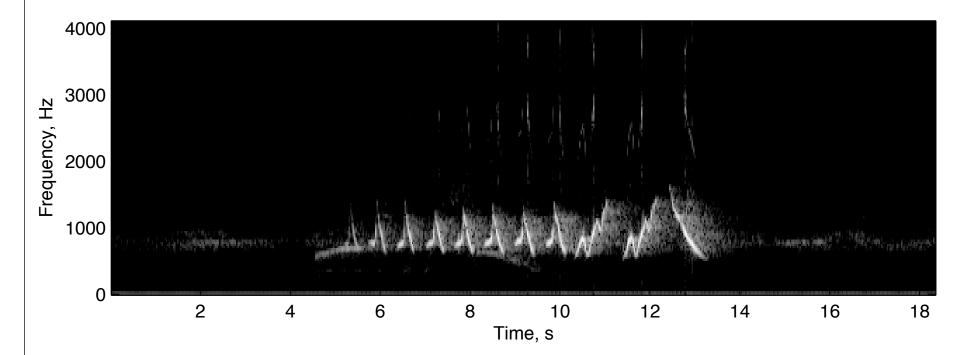
Applications

- Noise removal
- Recall bird chirp



Application

Denoising of Sparse spectrograms



• Spectrum is sparse! can implement adaptive filter, or just threshold!

Limitations of Discrete STFT

• Need overlapping \Rightarrow Not orthogonal

- Computationally intensive O(MN log N)
- Same size Heisenberg boxes

From STFT to Wavelets

- Basic Idea:
 - -low-freq changes slowly fast tracking unimportant
 - -Fast tracking of high-freq is important in many apps.
 - -Must adapt Heisenberg box to frequency
- Back to continuous time for a bit.....