EE123
Digital Signal Processing

Lecture 11
Introduction to Wavelets
Discrete STFT

\[X[r, k] = \sum_{m=0}^{L-1} x[rR + m] \omega[m] e^{-j2\pi km/N} \]

- \(\Delta\omega = \frac{2\pi}{L} \)
- \(\Delta t = L \)

One STFT coefficient
Limitations of Discrete STFT

- Need overlapping \Rightarrow Not orthogonal

- Computationally intensive $O(MN \log N)$

- Same size Heisenberg boxes
From STFT to Wavelets

• Basic Idea:
 – low-freq changes slowly - fast tracking unimportant
 – Fast tracking of high-freq is important in many apps.
 – Must adapt Heisenberg box to frequency

• Back to continuous time for a bit…..
From STFT to Wavelets

- Continuous time

\[S_f(u, \Omega) = \int_{-\infty}^{\infty} f(t) w(t - u) e^{-j\Omega t} \, dt \]

\[W_f(u, s) = \int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{s}} \Psi^* \left(\frac{t - u}{s} \right) \, dt \]

*Morlet - Grossmann

M. Lustig, EECS UC Berkeley
From STFT to Wavelets

\[Wf(u, s) = \int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{s}} \Psi^*(\frac{t - u}{s}) dt \]

- The function \(\Psi \) is called a mother wavelet
 - Must satisfy:
 \[\int_{-\infty}^{\infty} |\Psi(t)|^2 dt = 1 \quad \Rightarrow \text{unit norm} \]
 \[\int_{-\infty}^{\infty} \Psi(t) dt = 0 \quad \Rightarrow \text{Band-Pass} \]
STFT and Wavelets “Atoms”

STFT Atoms
(with hamming window)

\[w(t - u) e^{j\Omega t} \]

\(\Omega_{hi} \)

\(\Omega_{lo} \)

Wavelet Atoms

\[\frac{1}{\sqrt{s}} \Psi \left(\frac{t - u}{s} \right) \]

\(s = 1 \)

\(s = 3 \)
Examples of Wavelets

- **Mexican Hat**
 \[\Psi(t) = (1 - t^2)e^{-t^2/2} \]

- **Haar**
 \[\Psi(t) = \begin{cases}
 -1 & 0 \leq t < \frac{1}{2} \\
 1 & \frac{1}{2} \leq t < 1 \\
 0 & \text{otherwise}
\end{cases} \]
Example: Wavelet of Chirp
Wavelets VS STFT
Example 2: “Bumpy” Signal

log(s)

Sombrero Wavelet

log(s)
Wavelets Transform

• Can be written as linear filtering

\[Wf(u, s) = \frac{1}{\sqrt{s}} \int_{-\infty}^{\infty} f(t) \Psi^*(\frac{t - u}{s}) dt \]

\[= \{ f(t) \ast \overline{\Psi}_s(t) \}(u) \]

\[\overline{\Psi}_s = \frac{1}{\sqrt{s}} \Psi\left(\frac{t}{s}\right) \]

• Wavelet coefficients are a result of bandpass filtering
Wavelet Transform

- Many different constructions for different signals
 - Haar good for piece-wise constant signals
 - Battle-Lemarie’ : Spline polynomials

- Can construct Orthogonal wavelets
 - For example: dyadic Haar is orthonormal

\[
\overline{\Psi}_{i,n}(t) = \frac{1}{\sqrt{2^i}} \Psi\left(\frac{t - 2^i n}{2^i}\right)
\]
Orthonormal Haar

Same scale non-overlapping

Orthogonal between scales
Scaling function

\[\overline{\Psi}_{i,n}(t) = \frac{1}{\sqrt{2^i}} \Psi\left(\frac{t - 2^i n}{2^i} \right) \]

- Problem:
 - Every stretch only covers half remaining bandwidth
 - Need Infinite functions

recall, for chirp:
Scaling function

\[\overline{\Psi}_{i,n}(t) = \frac{1}{\sqrt{2^i}} \Psi\left(\frac{t - 2^i n}{2^i} \right) \]

- **Problem:**
 - Every stretch only covers half remaining bandwidth
 - Need Infinite functions

- **Solution:**
 - Plug low-pass spectrum with a scaling function \(\overline{\Phi} \)
Haar Scaling function

\[\Psi(t) = \begin{cases}
-1 & 0 \leq t < \frac{1}{2} \\
1 & \frac{1}{2} \leq t < 1 \\
0 & \text{otherwise}
\end{cases} \]

\[\Phi(t) = \begin{cases}
1 & 0 \leq t < 1 \\
0 & \text{otherwise}
\end{cases} \]
Back to Discrete

• Early 80’s, theoretical work by Morlett, Grossman and Meyer (math, geophysics)
• Late 80’s link to DSP by Daubechies and Mallat.

• From CWT to DWT not so trivial!
• Must take care to maintain properties