

Lecture 19
Practical ADC/DAC

Ideal Anti-Aliasing ADC A/D sampler $x[n] = x_c(nT)$ $x_c(t)$ **Analog** Quantizer Anti-Aliasing t = nTFilter H_{LP}(jΩ) $X_s(j\Omega)$ $X_c(j\Omega)$ and $\Omega_s < 2\Omega_N$ $\overline{\Omega_N}$ Ω_s $-\Omega_N$ $X_c(j\Omega)H_{\rm LP}(j\Omega)$ $X_s(j\Omega)$ and $\Omega_s < 2\Omega_N$

 $-\Omega |_{N}$

 $\uparrow \Omega_N$

M. Lustig, EECS UC Berkeley

 $\overline{\Omega_N}$ Ω_s

Non Ideal Anti-Aliasing

- Problem: Hard to implement sharp analog filter
- Tradeoff:
 - Crop part of the signal
 - -Suffer from noise and interference (See lab II!)

Oversampled ADC

Oversampled ADC

Oversampled ADC after oversampling x2 $\hat{X}(e^{j\omega})$ aliased noise after digital LP and decimation $\hat{X}_d(e^{j\omega})$ $T_d = MT$ $1/T_d$

Sampling and Quantization

Sampling and Quantization

• for 2's complement with B+1 bits $-1 \le \hat{x}_B[n] < 1$

$$\Delta = \frac{2X_m}{2^{B+1}} = \frac{X_m}{2^B}$$

Quantization Error

Model quantization error as noise

$$\begin{array}{c}
x[n] \\
& \hat{x}[n] = x[n] + e[n] \\
e[n]
\end{array}$$

In that case:

$$-\Delta/2 \le e[n] < \Delta/2$$

$$(-X_m - \Delta/2) < x[n] \le (X_m - \Delta/2)$$

Noise Model for Quantization Error

Assumptions:

- -Model e[n] as a sample sequence of a stationary random process
- -e[n] is not correlated with x[n], e.g., $\mathrm{E}\,e[n]\,x[n]=0$
- e[n] not correlated with e[m], e.g., $\operatorname{E} e[n] x[m] = 0 \mid \operatorname{m} \neq \operatorname{n}$ (white noise)
- $-e[n] \sim U[-\Delta/2, \Delta/2]$

Result:

- Variance is: $\sigma_e^2=rac{\Delta^2}{12}$, or $\sigma_e^2=rac{2^{-2B}X_m^2}{12}$ since $\Delta=2^{-B}X_m$
- Assumptions work well for signals that change rapidly, are not clipped and for small $\boldsymbol{\Delta}$

Quantization Noise

Figure 4.57 (*continued*) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence for 8-bit quantization of the signal in (a).

SNR of Quantization Noise

• For uniform B+1 bits quantizer: $\sigma_e^2 = \frac{2^{-2D} X_m^2}{12}$

$$SNR_Q = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2}\right)$$
$$= 10 \log_{10} \left(\frac{12 \cdot 2^{2B} \sigma_x^2}{X_m^2}\right)$$

$$\mathrm{SNR}_Q = 6.02B + 10.8 - 20\log_{10}\left(rac{X_m}{\sigma_x}
ight)$$
 Quantizer range rms of amp

SNR of Quantization Noise

$$\mathrm{SNR}_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{X_m}{\sigma_x} \right)$$
 Quantizer range rms of amp

- Improvement of 6dB with every bit
- The range of the quantization must be adapted to the rms amplitude of the signal
 - Tradeoff between clipping and noise!
 - Often use pre-amp
 - Sometimes use analog auto gain controller (AGC)
 - If $\sigma_x = X_m/4$ then $SNR_Q \approx 6B 1.25dB$ so SNR of 90-96 dB requires 16-bits (audio)

Quantization noise in Oversampled ADC

Quantization noise in Oversampled ADC

- Energy of x_d[n] equals energy of x[n]
 - No filtering of signal!
- Noise var is reduced by factor of M

$$SNR_Q = 6.02B + 10.8 - 20 \log_{10} \left(\frac{X_m}{\sigma_x}\right) + 10 \log_{10} M$$

- For doubling of M we get 3dB improvement,
 which is the same as 1/2 a bit of accuracy
 - With oversampling of 16 with 8bit ADC we get the same quantization noise as 10bit ADC!

Practical ADC (Ch. 4.8.4)

D.T
$$x[n] = x(t)|_{t=nT} \longrightarrow \begin{cases} \text{sinc pulse} \\ \text{generator} \end{cases} \rightarrow x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \text{sinc} \left(\frac{t-nT}{T}\right)$$

- Scaled train of sinc pulses
- Difficult to generate sinc ⇒ Too long!

C.T analog processing

- $h_0(t)$ is finite length pulse \Rightarrow easy to implement
- For example: zero-order hold

Zero-Order-Hold interpolation

$$x_0(t) = \sum_{n=-\infty}^{\infty} x[n]h_0(t-nT) = h_0(t) * x_s(t)$$

Taking a FT:

$$X_{(j}\Omega) = H_0(j\Omega)X_s(j\Omega)$$

$$= H_0(j\Omega)\frac{1}{T}\sum_{k=-\infty}^{\infty} X(j(\Omega - k\Omega_s))$$

Output of the reconstruction filter:

$$X_r(j\Omega) = H_r(j\Omega) \cdot H_0(j\Omega) \cdot X_s(j\Omega)$$

$$= \underbrace{H_r(j\Omega) \cdot Te^{-j\Omega \frac{T}{2}} \mathrm{sinc}(\frac{\Omega}{\Omega_s})}_{\text{recon filter}} \cdot \underbrace{\frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\Omega - k\Omega_s))}_{\text{Shifted copies from sampling}}$$

$$H_r(j\Omega) = \underbrace{H_r(j\Omega) \cdot Te^{-j\Omega \frac{T}{2}} \mathrm{sinc}(\frac{\Omega}{\Omega_s})}_{\text{From zero-order hold}} \cdot \underbrace{\frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\Omega - k\Omega_s))}_{\text{Shifted copies from sampling}}$$

Ideally:

Easier Implementation with Digital upsampling

Easier Implementation with Digital upsampling

easier implementing with analog components

Need analog components made of low-loss unobtainium transistors

