

Digital Signal Processing

Lecture 27 Compressed Sensing II

From Samples to Measurements

Shanon-Nyquist sampling

 Worst case for ANY bandlimited data

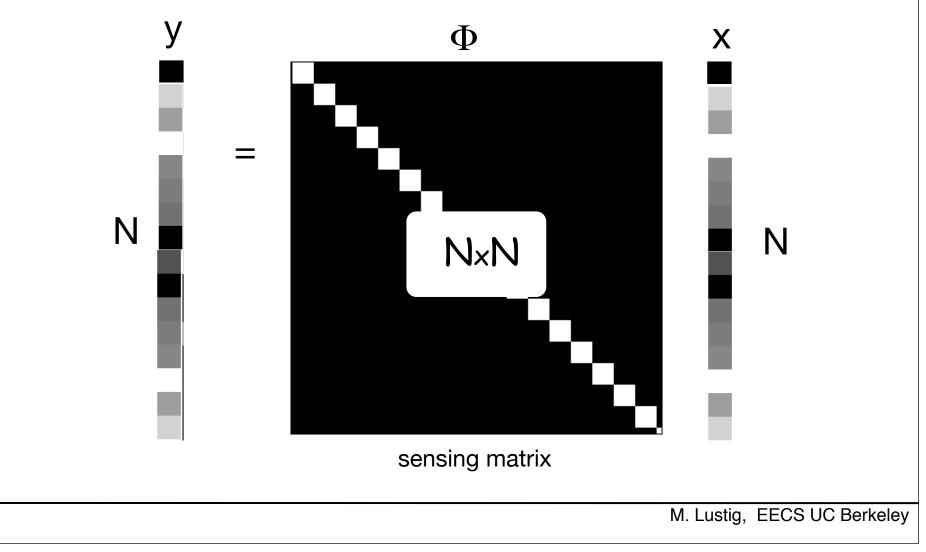
• Compressive sampling (CS)

"Sparse signals statistics can be recovered from a small number of non-adaptive linear measurements"

- -Integrated sensing, compression and processing.
- Based on concepts of incoherency between signal and measurements

Traditional Sensing

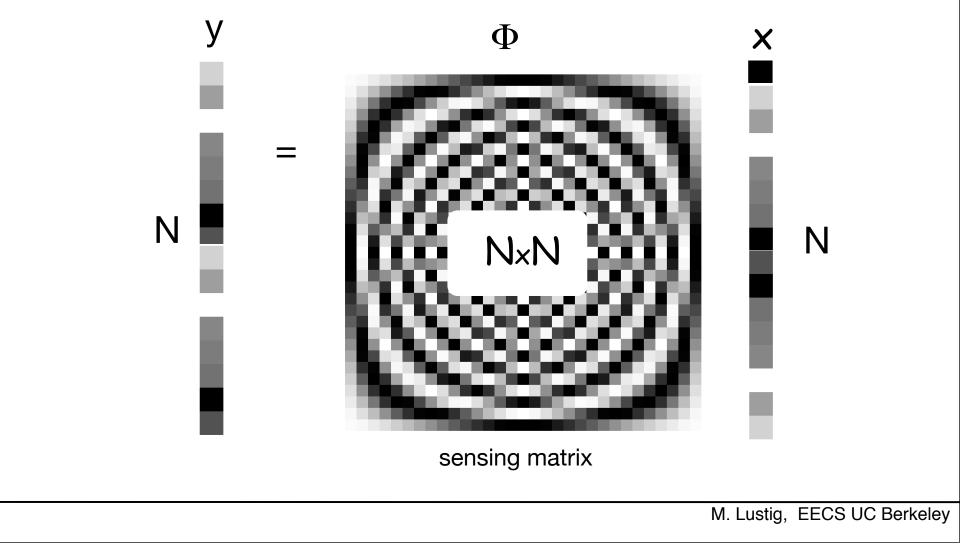
- $x \in \Re^N$ is a signal
- Make N linear measurements



Desktop scanner/ digital camera sensing

Traditional Sensing

- $x \in \Re^N$ is a signal
- Make N linear measurements

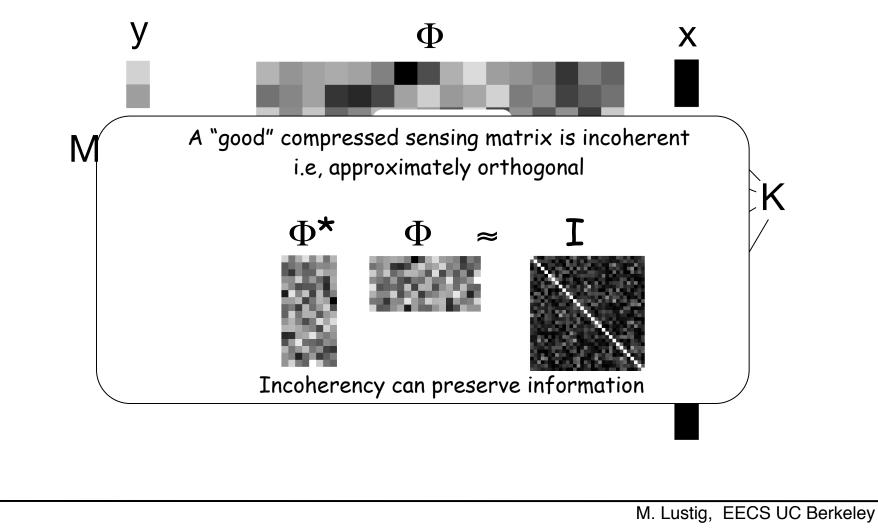


MRI Fourier Imaging

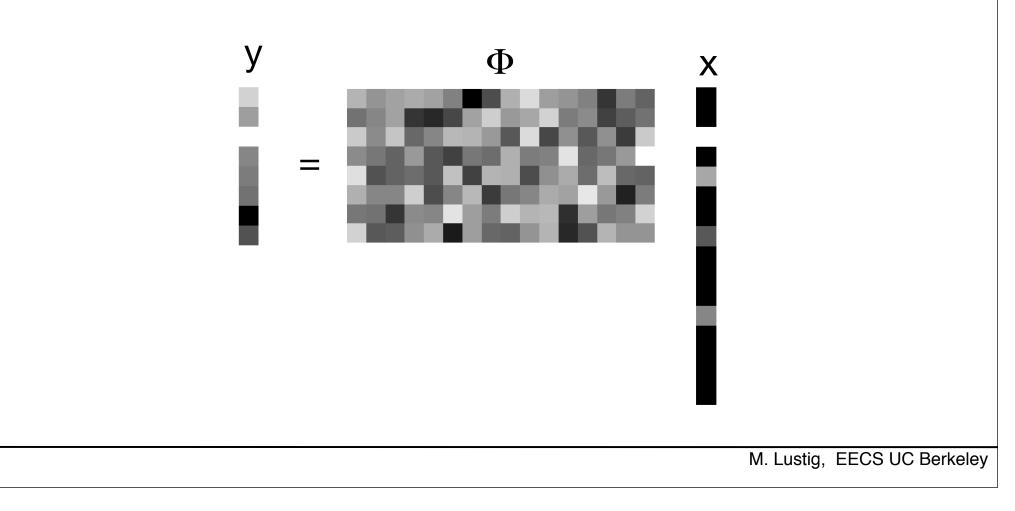
Traditional Sensing Arbitrary sensing • x∈ℜ^N is a signal Make N linear measurements Φ Х A "good" sensing matrix is orthogonal Φ^{\star} Φ sensing matrix M. Lustig, EECS UC Berkeley

Compressed Sensing

- x∈ℜ^N is a K-sparse signal (K<<N)
- Make M (K<M<<N) incoherent linear projections



- Given y = Φx
 find x
 Under-determined
- But there's hope, x is sparse!



- Given y = Φx
 find x
 Under-determined
- But there's hope, x is sparse!

- Given y = Φx
 find x
 Under-determined
- But there's hope, x is sparse!

minimize $||\mathbf{x}||_2$ s.t. y = $\Phi \mathbf{x}$

WRONG!

- Given y = Φx
 find x
 Under-determined
- But there's hope, x is sparse!

minimize $||\mathbf{x}||_0$ s.t. y = $\Phi \mathbf{x}$

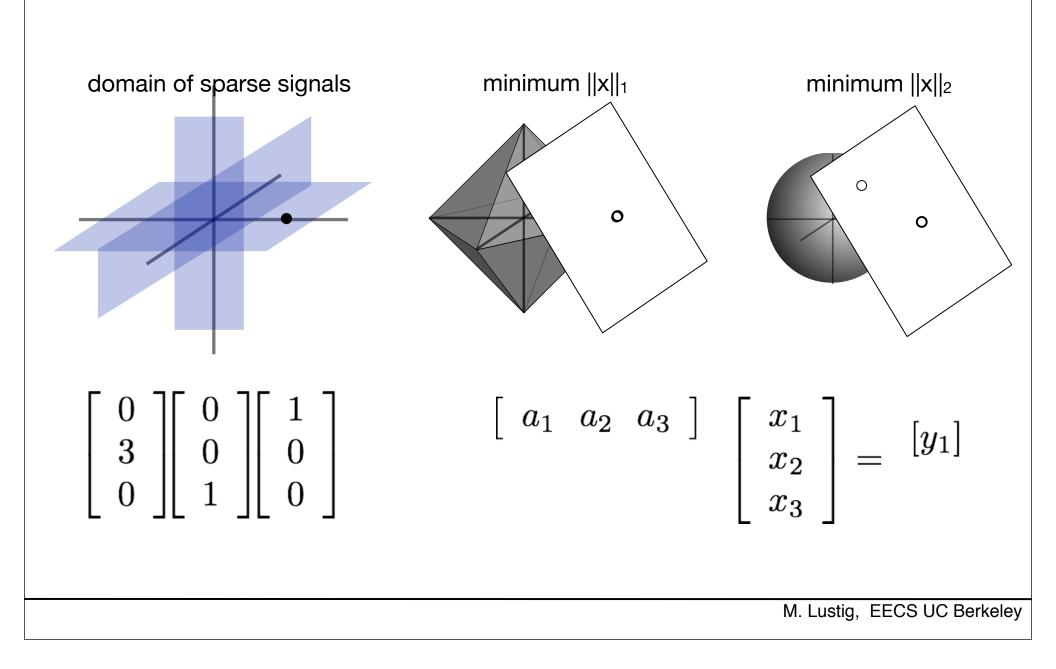
HARD!

- Given y = Φx find x Under-determined
- But there's hope, x is sparse!

minimize $||x||_1$ s.t. y = Φx

need M \approx K log(N) <<N Solved by linear-programming

Geometric Interpretation

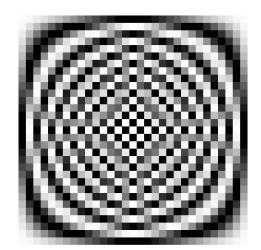


A non-linear sampling theorem

- f \in C^N supported on a set Ω in Fourier
- Shannon:
 - $-\Omega$ is known connected set, size B
 - Exact recovery from B equispaced time samples
 - Linear reconstruction by sinc interpolation
- Non-linear sampling theorem
 - $-\Omega$ is an arbitrary, unknown set of size B
 - Exact recovery from ~ B logN (almost) arbitrary placed samples
 - Nonlinear reconstruction by convex programming

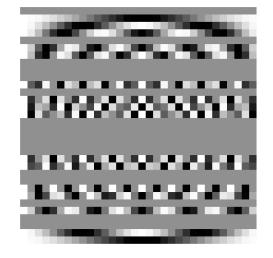
• Can such sensing system exist in practice?

Fourier matrix



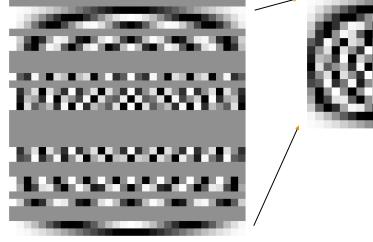
• Can such sensing system exist in practice?

Fourier matrix



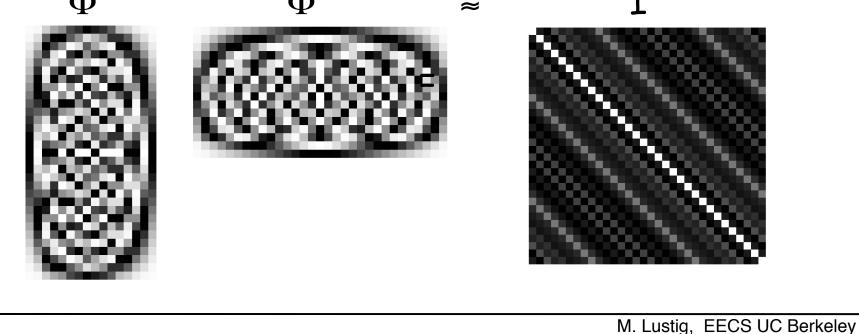
• Can such sensing system exist in practice?

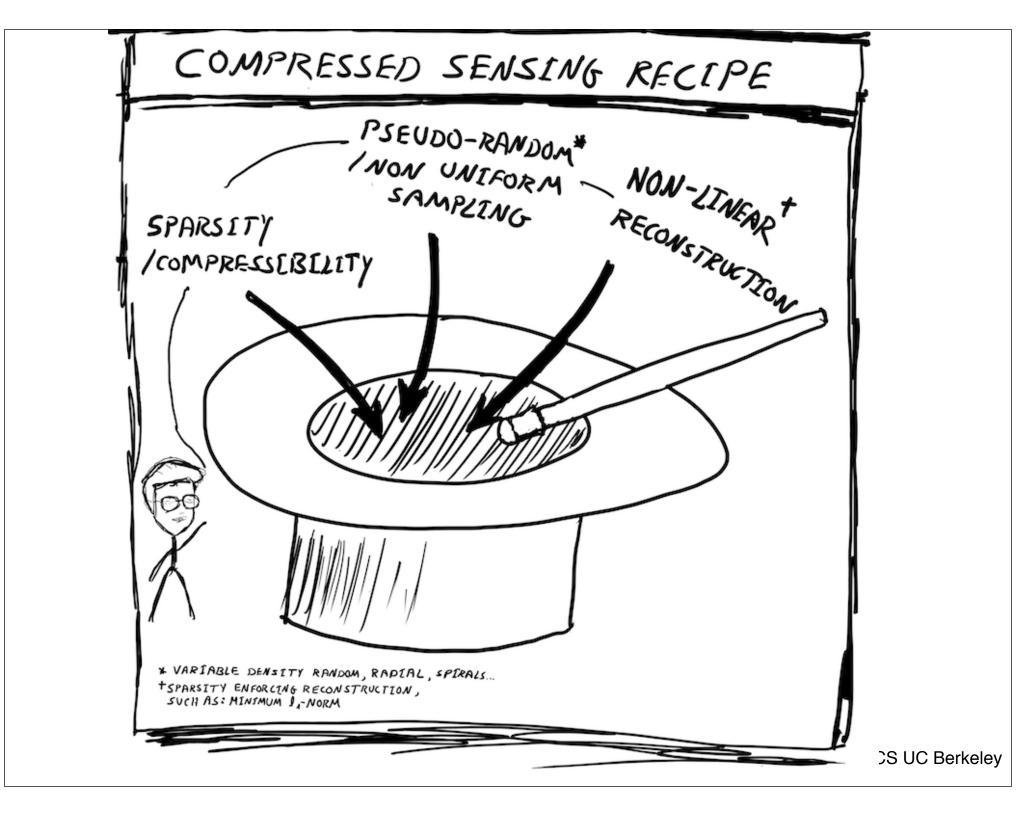
Fourier matrix



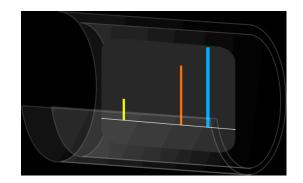
- Can such sensing system exist in practice?
- Randomly undersampled Fourier is incoherent

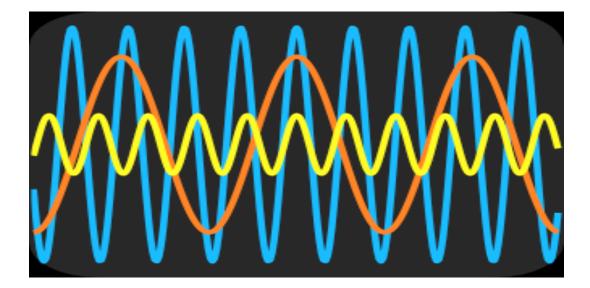
• MRI samples in the Fourier domain! Φ^* Φ

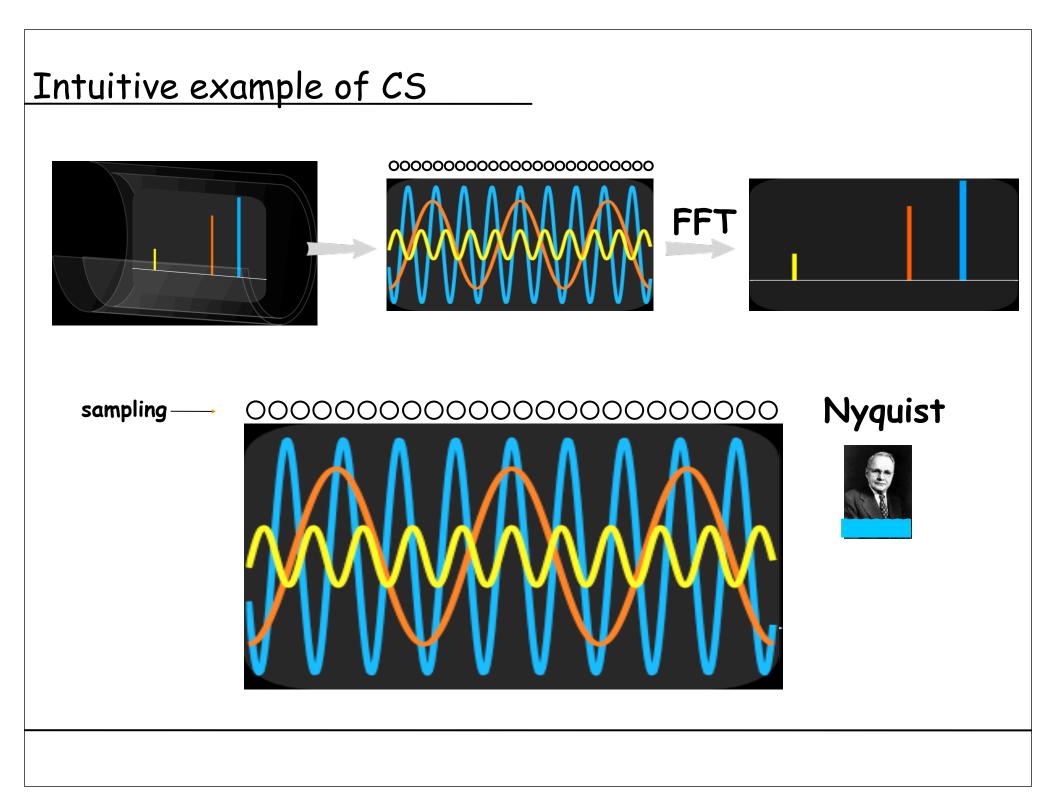


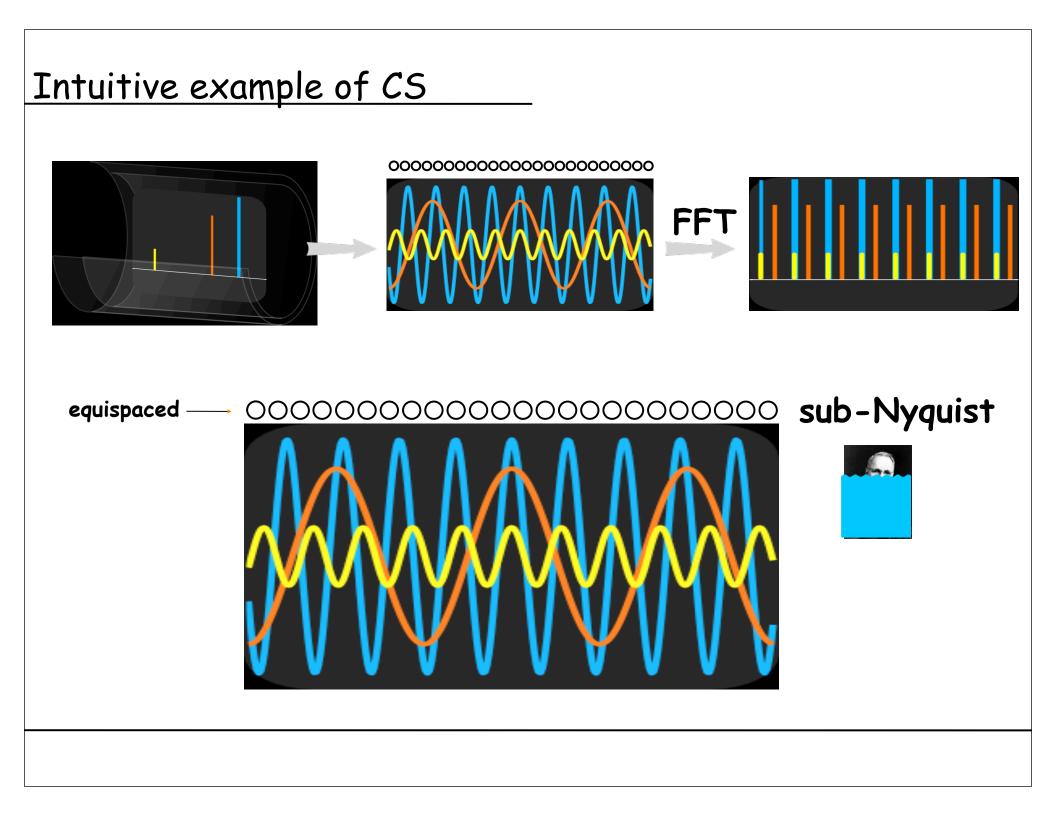


Intuitive example of CS

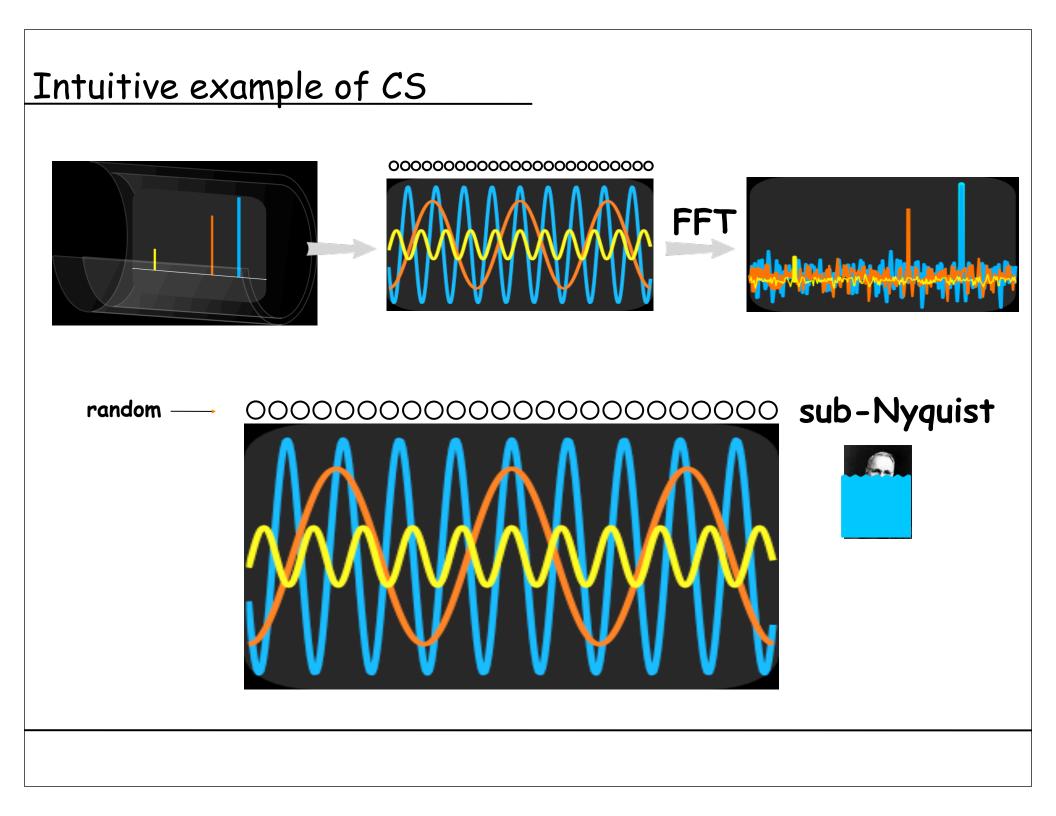






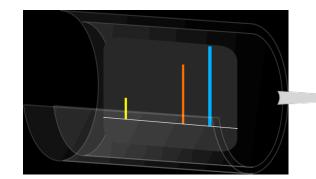


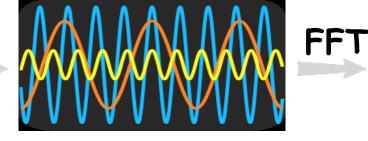
Intuitive example of CS FFT sub-Nyquist Ambiguity

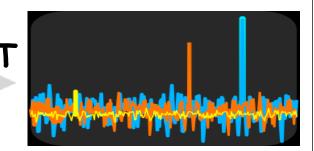


RANDOM SUBSAMPLING DFT LOOKS LIKE SPARSE DENOISING BUT THERE ARE AGAIN SOME BURRTED LET'S START PEAKS THIS TIME WETH THE OK,ON THE BEG ONES COUNTOF THREE FIRST IVI. LUSIIY, EECS UC Berkeley

Intuitive example of CS



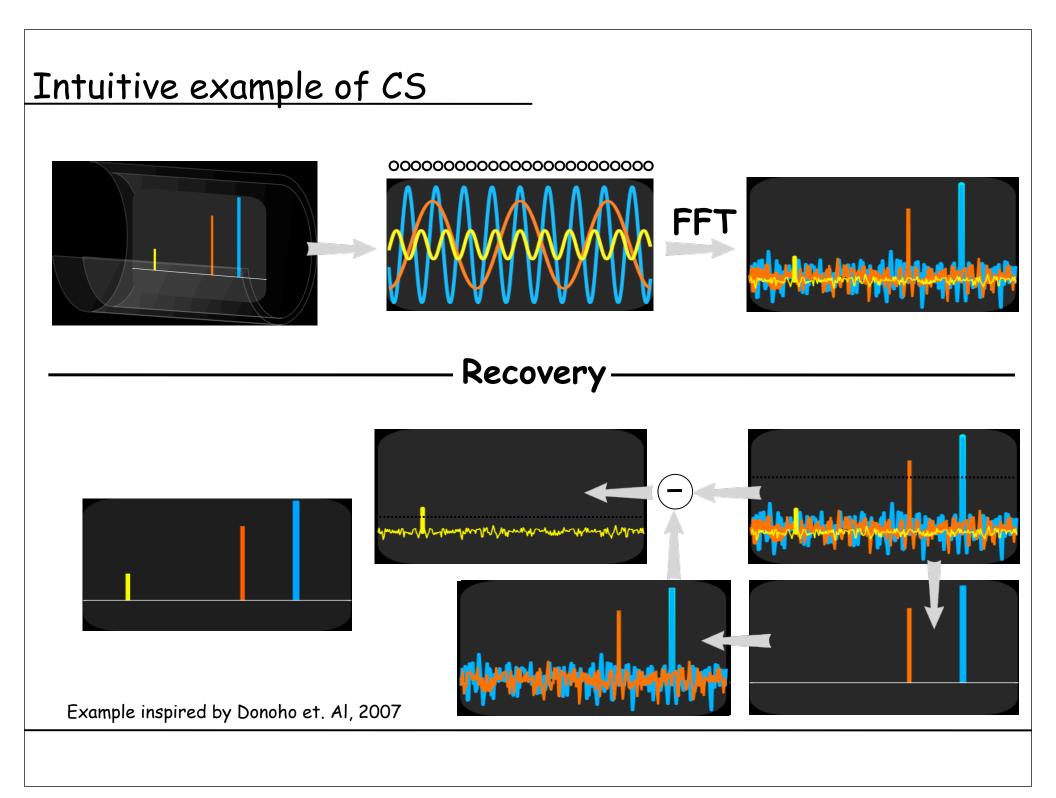


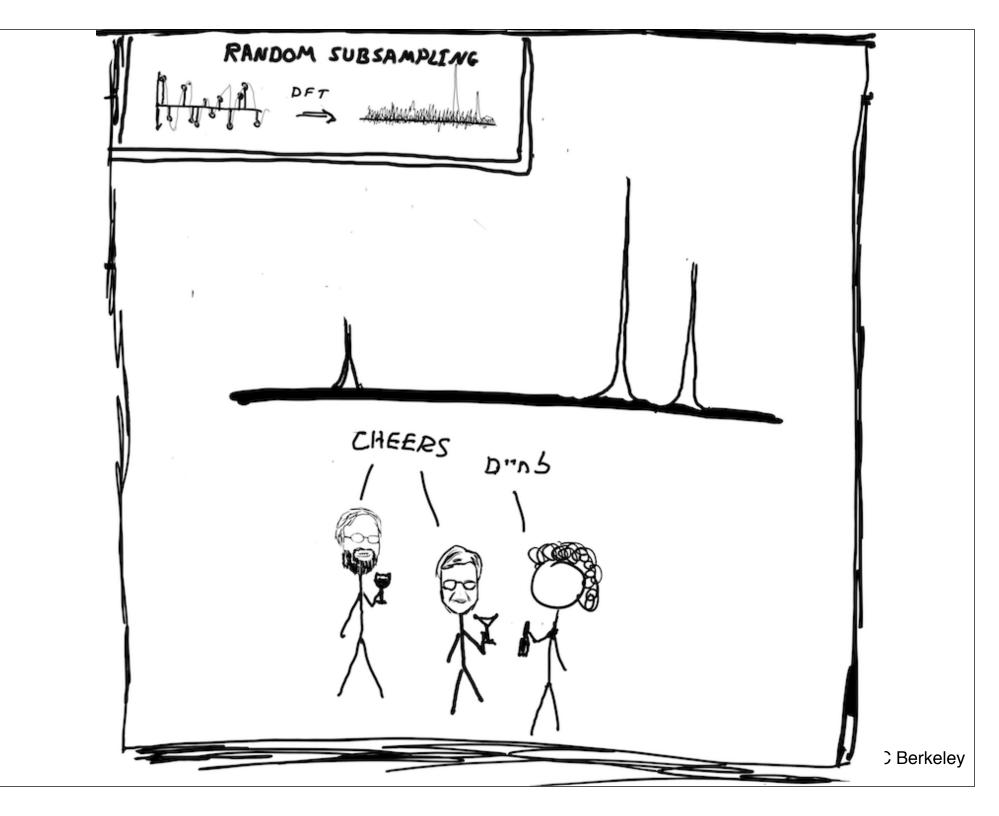


Intuitive example of CS FFT sub-Nyquist But it's not noise!

RANDOM SUBSAMPLING DFT wardhas South unders QWE www.uhly TWO WE CAN ()CALCULATE THE INTERFERENCE THEY CREATE AND REMOVE IT C Berkeley

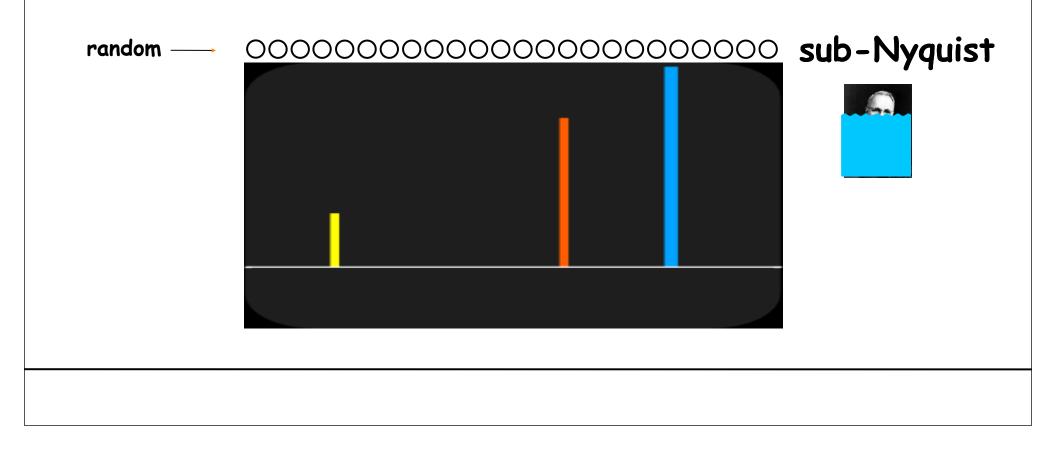
RANDOM SUBSAMPLING DFT now Mar Benelly understal THREEE INTERFERENCE SHOULD BE LOWER Now AH THERE IT IS! 6-00D Y LET'S CLEAN IT UP AND PUT TOGENTHER And the south of the second C Berkeley

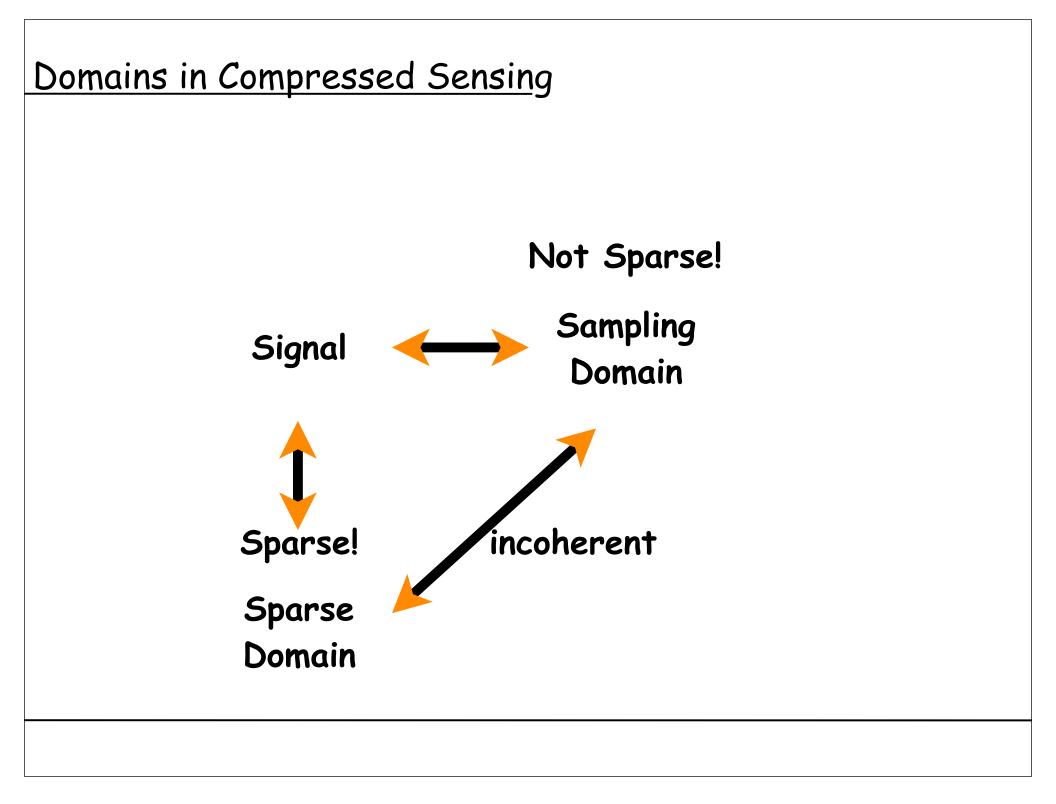




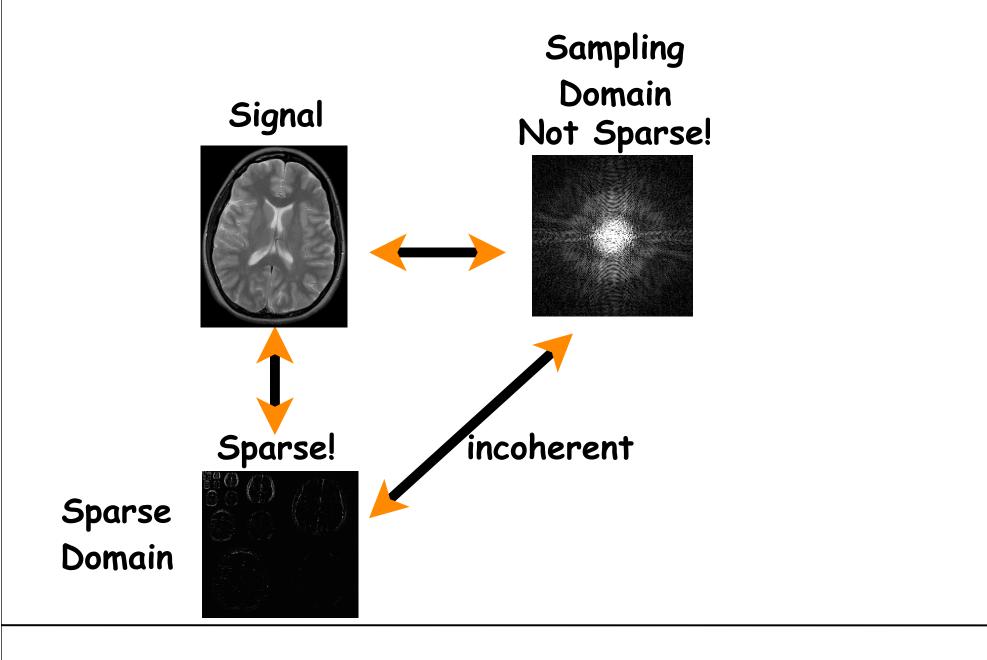
Question!

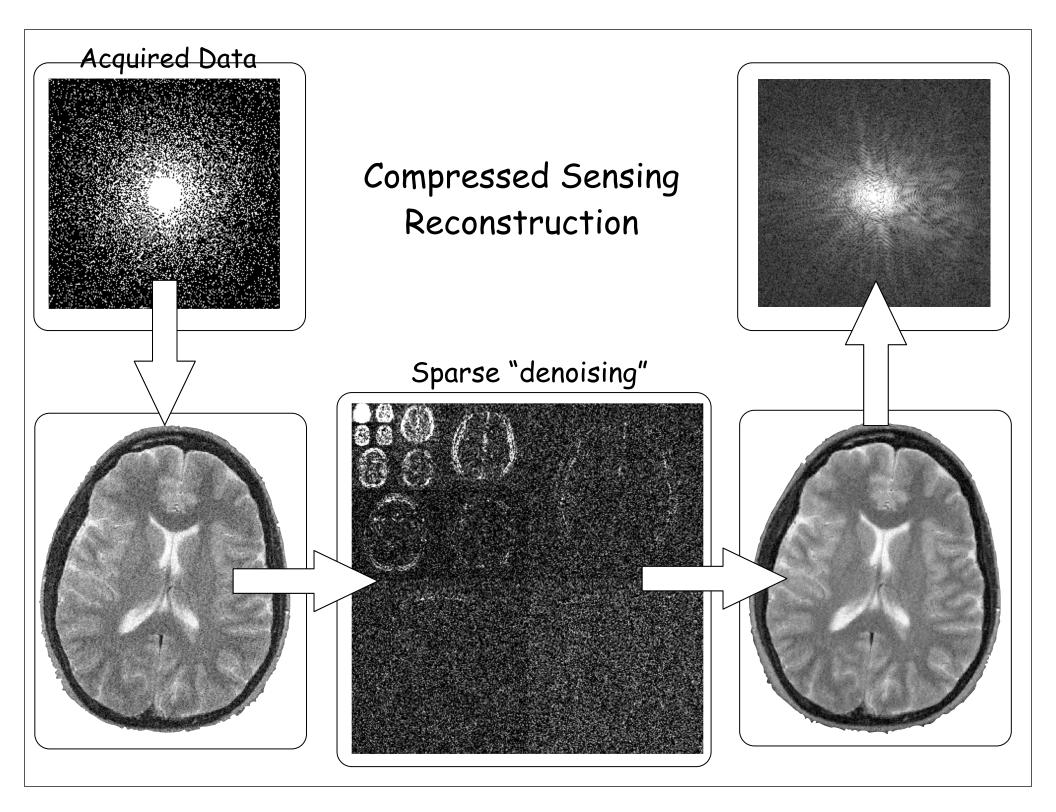
- What if this was the signal?
- Would CS still work?

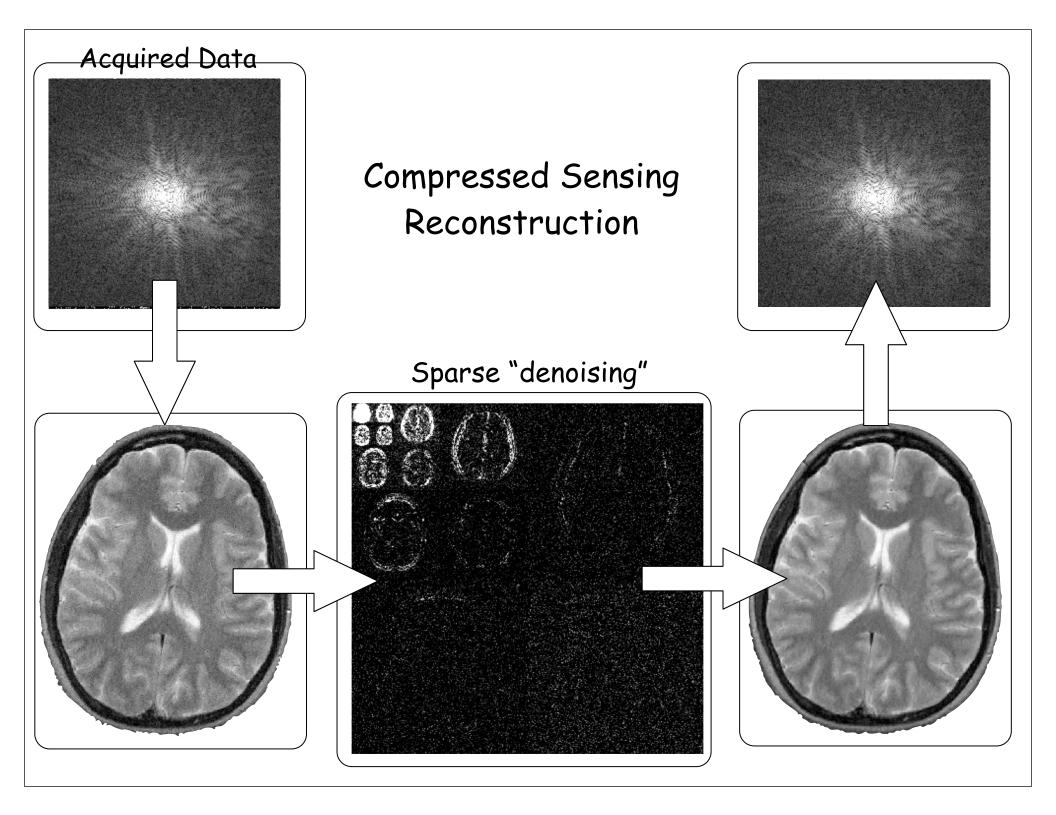


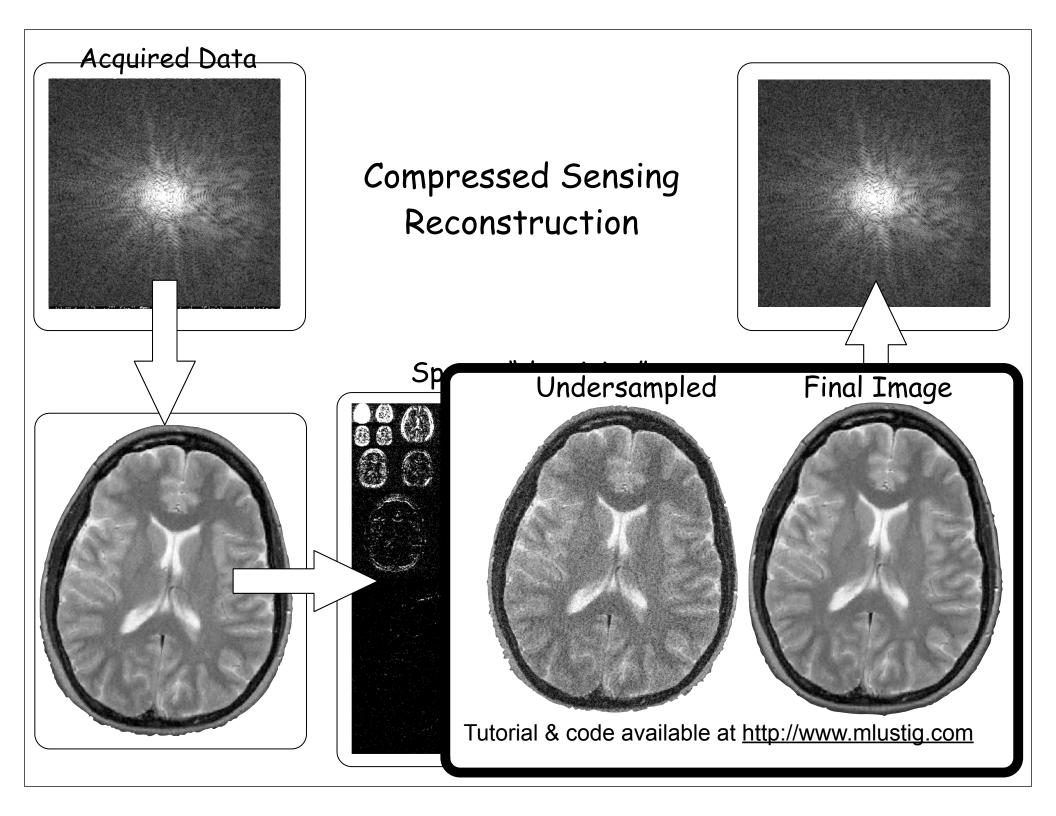


MRI

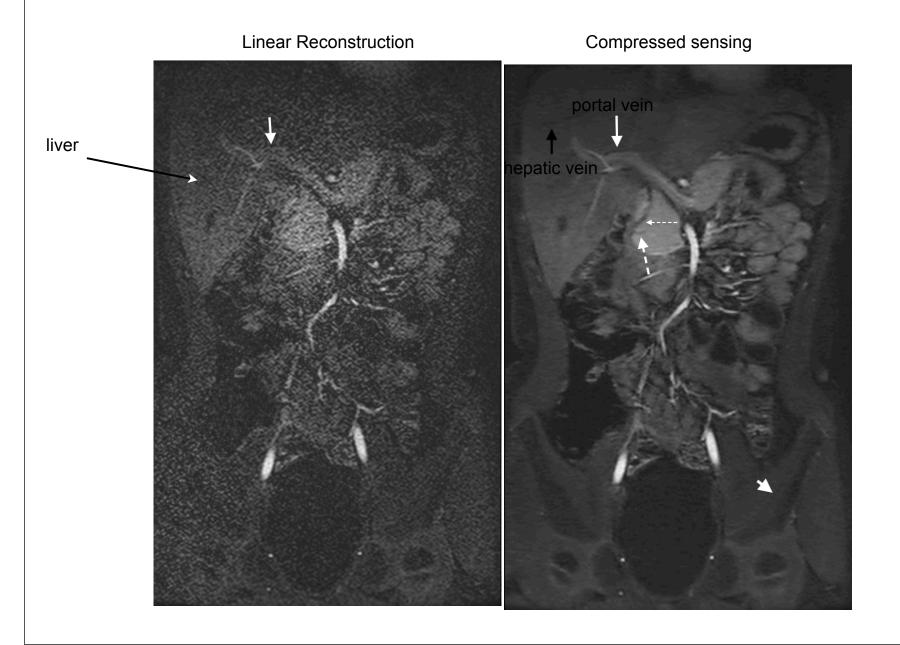




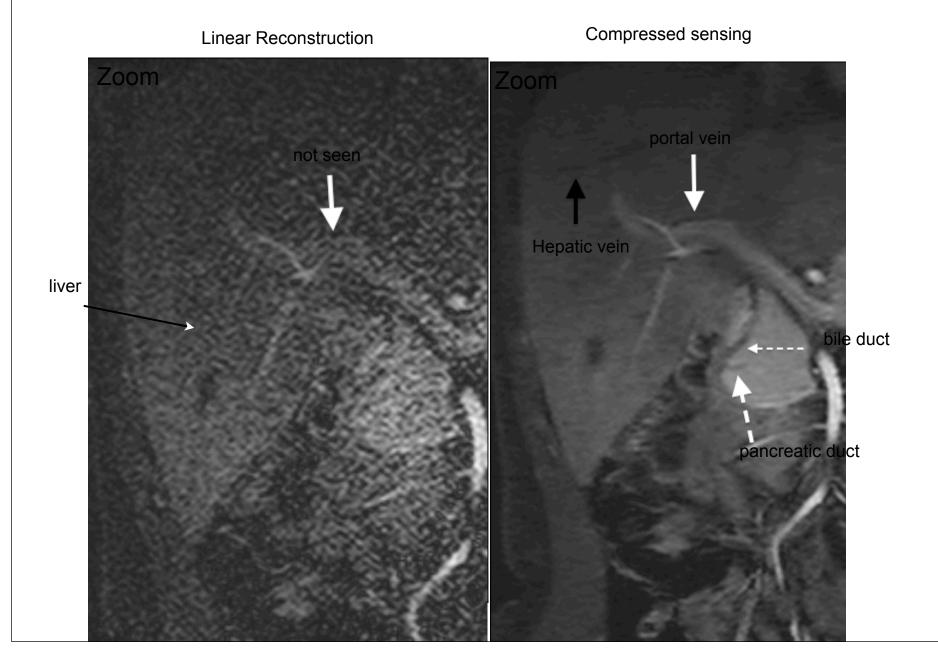




6 year old male abdomen. Fine structures (arrows) are buried in noise (artifactual + noise amplification) and are recovered by CS with L1-wavelets. x8 acceleration

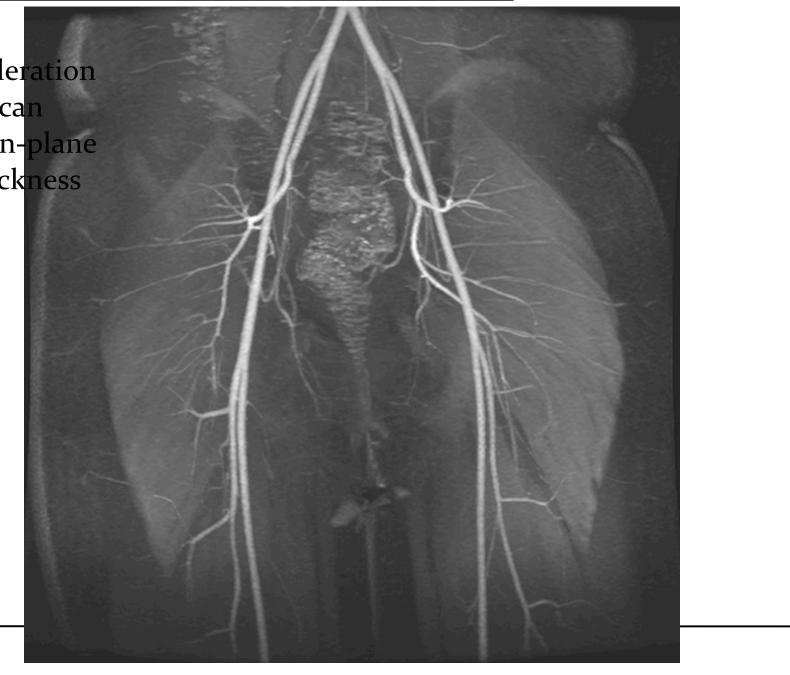


6 year old male abdomen. Fine structures (arrows) are buried in noise (artifactual + noise amplification) and are recovered by CS with L1-wavelets.

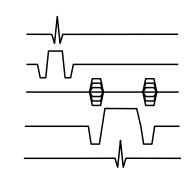


Back to Results

6 year old 8-fold acceleration 16 second scan 0.875 mm in-plane 1.6 slice thickness



Principles of Magnetic Resonance Imaging EE c225E / BIOE c265



Spring 2016

Shameless Promotion

Other Applications

- Compressive Imaging
- Medical Imaging
- Analog to information conversion
- Biosensing
- Geophysical Data Analysis
- Compressive Radar
- Astronomy
- Communications
- More

Resources

- CS + parallel imaging matlab code, examples
 <u>http://www.eecs.berkeley.edu/~mlustig/software/</u>
- Rice University CS page: papers, tutorials, codes, <u>http://www.dsp.ece.rice.edu/cs/</u>
- IEEE Signal Processing Magazine, special issue on compressive sampling 2008;25(2)
- March 2010 Issue Wired Magazine: "Filling the Blanks"

Igor Caron Blog: <u>http://nuit-blanche.blogspot.com/</u>
 Thank you!
 תודה רבה